Abstract
The evolution of mathematics coincided with advancements in its teaching. The 19th and 20th centuries marked a pedagogical revolution in mathematics education. This paper argues that Bruner’s (1966) model, Gagné’s (1985) taxonomy, innovative teaching methods emphasizing research and problem-solving, and the inclusion of data analysis topics have shaped modern mathematics education. Additionally, the paper explores transformative trends, emphasizing mathematics literacy and the integration of virtual reality (VR) and artificial intelligence (AI) in education. This evolution emphasizes practical, contextually relevant approaches. VR enhances engagement and comprehension of abstract concepts, while AI offers personalized learning experiences, fostering deeper understanding and skill development.
License
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Article Type: Review Article
INT ELECT J MATH ED, Volume 19, Issue 3, August 2024, Article No: em0783
https://doi.org/10.29333/iejme/14663
Publication date: 01 Jul 2024
Online publication date: 30 May 2024
Article Views: 1634
Article Downloads: 1058
Open Access References How to cite this articleReferences
- Adenegan, K. E. (2011). Setting mathematics laboratory in schools. https://slub.qucosa.de/api/qucosa%3A1877/attachment/ATT-0/
- Alalwan, N., Cheng, L., Al-Samarraie, H., Yousef, R., Alzahrani, A. I., & Sarsam, S. M. (2020). Challenges and prospects of virtual reality and augmented reality utilization among primary school teachers: A developing country perspective. Studies in Educational Evaluation, 66, 100876. https://doi.org/10.1016/j.stueduc.2020.100876
- Antoliš, S., Axelsen, J., Bašić, M, Bos, R., Cafuta, K., Copić, A., & Dolinar, G. R. (2019). MERIA scenariji in moduli [MERIA scenarios and modules]. Institute of the Republic of Slovenia for Education.
- Baker, M. J. (2015). Collaboration in collaborative learning. Interaction Studies, 16(3), 451-473. https://doi.org/10.1075/is.16.3.05bak
- Barron, B., & Darling-Hammond, L. (2010). Prospects and challenges for inquiry-based approaches to learning. In H. Dumont, F. Istance, & F. Benavides (Eds.), The nature of learning: Using research to inspire practice (pp. 199-225). https://doi.org/10.1787/9789264086487-en
- Beyer, K., & Walter, O. (2014). Johannes Kühnel s ideas and his presence and impact in Venezuelan mathematics education. Paradígma, 35(1), 7-53.
- Birgili, B. (2015). Creative and critical thinking skills in problem-based learning environments. Journal of Gifted Education and Creativity, 2(2), 71-80. https://doi.org/10.18200/JGEDC.2015214253
- Blaye, A., Gilly, M., & Roux, J. P. (1988). Elaboración de construcciones cognitivas individuales en situaciones sociocognitivas de resolución de problemas [Elaboration of individual cognitive constructions in sociocognitive problem-solving situations]. In Psicología social del desarrollo cognitivo [Social psychology of cognitive development] (pp. 139-164). Anthropos.
- Bone, J., Cotič, M., & Felda, D. (2021). Utemeljevanje pri pouku matematike [Justifying in mathematics lessons]. Pedagoška Obzorja [Pedagogical Horizons], 36(1), 33-52.
- Boyer, C. B. (2011). A history of mathematics. John Wiley & Sons.
- Browder, F. E. (1976). The relevance of mathematics. The American Mathematical Monthly, 83(4), 249-254. https://doi.org/10.1080/00029890.1976.11994089
- Bruner, J. S. (1966). Toward a theory of instruction. Belkapp Press.
- Bullynck, M. (2008). The transmission of numeracy: Integrating reckoning in Protestant North-German elementary education (1770-1810). Paedagogica Historica [Historical Pedagogy], 44(5), 563-585. https://doi.org/10.1080/00309230802042714
- Cakiroglu, U., Guler, M., Dundar, M., & Coskun, F. (2023). Virtual reality in realistic mathematics education to develop mathematical literacy skills. International Journal of Human-Computer Interaction. https://doi.org/10.1080/10447318.2023.2219960
- Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. IEEE Access, 8, 75264-75278. https://doi.org/10.1109/ACCESS.2020.2988510
- Chesky, N. Z., & Wolfmeyer, M. (2020). Mathematics for the future of humanity: A radical onto-epistemological approach. The International Journal of Critical Pedagogy, 11(1), 59-80.
- Clark-Wilson, A., Robutti, O., & Thomas, M. (2020). Teaching with digital technology. ZDM Mathematics Education, 52, 1223-1242. https://doi.org/10.1007/s11858-020-01196-0
- Cockcroft, W. H. (1982). Mathematics counts. HMSO.
- Cotič, M., & Hodnik, T. (1995). Prvo srečanje z verjetnostnim računom in statistiko v osnovni šoli [First encounter with probability calculus and statistics in elementary school]. Matematika v Soli [Mathematics in School], 2/1, 5-14.
- Da Ponte, J. P. (2007). Investigations and explorations in the mathematics classroom. ZDM Mathematics Education, 39, 419-430. https://doi.org/10.1007/s11858-007-0054-z
- Dauben, J. W. (1979). Georg Cantor’s creation of transfinite set theory: Personality and psychology in the history of mathematics. Annals of the New York Academy of Sciences, 321(1), 27-44. https://doi.org/10.1111/j.1749-6632.1979.tb14106.x
- De Bock, D. (2023). The early roots of the European modern mathematics movement: How a model for the science of mathematics became a model for mathematics education. In D. De Bock (Ed.), Modern mathematics: An international movement? (pp. 37-53). Springer. https://doi.org/10.1007/978-3-031-11166-2_3
- Dilling, F., & Sommer, J. (2022). Virtual reality in mathematics education: Design of an application for multiview projections. In Proceedings of the 15th International Conference on Technology in Mathematics Teaching (pp. 263-270).
- Ellerton, N., & Clements, M. K. (2022). Mathematics textbooks and the gradual decline in the use of middle-to advanced-level abbaco arithmetic 1607-1865. In Toward mathematics for all: Reinterpreting history of mathematics in North America 1607-1865 (pp. 97-164). Springer. https://doi.org/10.1007/978-3-030-85724-0_4
- Evans, G. R. (1977). From abacus to algorism: Theory and practice in medieval arithmetic. The British Journal for the History of Science, 10(2), 114-131. https://doi.org/10.1017/S0007087400015375
- Feinstein, I. K. (1972). Preparation for effective mathematics teaching in the inner city. The Mathematics Teacher, 65(1), 79-85. https://doi.org/10.5951/MT.65.1.0079
- Felda, D., & Cotič, M. (2012). Zakaj poučevati matematiko [Why teach math]. Journal of Elementary Education, 5(2/3), 107-120.
- Ferreirs, J. (2008). Labyrinth of thought: A history of set theory and its role in modern mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-7643-8350-3
- Fink, L. D. (1999). Active learning. https://commons.trincoll.edu/ctl/files/2013/08/Week-3-Active-Learning.pdf
- Fink, L. D. (2003). A self-directed guide to designing courses for significant learning. https://www.bu.edu/sph/files/2014/03/www.deefinkandassociates.com_GuidetoCourseDesignAug05.pdf
- Fischbein, E. (1975). The intuitive sources of probabilistic thinking in children. Reidel. https://doi.org/10.1007/978-94-010-1858-6
- Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23), 8410-8415. https://doi.org/10.1073/pnas.1319030111
- Friberg, J. (2000). Mathematics at Ur in the Old Babylonian period. Revue D’assyriologie et D’archéologie Orientale [Journal of Assyriology and Oriental Archeology], 94(2), 97-188.
- Furinghetti, F., & Giacardi, L. (2023). ICMI in the 1950s and 1960s: Reconstruction, settlement, and “revisiting mathematics education”. In F. Furinghetti, & L. Giacardi (Eds.), The International Commission on Mathematical Instruction, 1908-2008: People, events, and challenges in mathematics education (pp. 43-94). Springer. https://doi.org/10.1007/978-3-031-04313-0_2
- Furinghetti, F., Matos, J. M., & Menghini, M. (2012). From mathematics and education, to mathematics education. In M. Clements, A. Bishop, C. Keitel, J. Kilpatrick, & F. Leung (Eds.), Third international handbook of mathematics education (pp. 273-302). Springer. https://doi.org/10.1007/978-1-4614-4684-2_9
- Furinghetti, F., Menghini, M., Arzarello, F., & Giacardi, L. (2008). ICMI renaissance: The emergence of new issues in mathematics education. In M. Menghini, F. Furinghetti, L. Giacardi, & F. Arzarello (Eds.), The 1st Century of the International Commission on Mathematical Instruction (1908-2008): Reflecting and shaping the world of mathematics education (pp. 131-147). Institute of the Italian Encyclopedia.
- Gagné, R. (1985). The conditions of learning and theory of instruction. Holt, Rinehart, and Winston.
- Gardiner, A. (2004). What is mathematical literacy? [Paper presentation]. 10th International Congress on Mathematics Education, ICME-10, July 4–11, 2014, Copenhagen, Denmark.
- Goldin, G. A., & Shteingold, N. (2001). Systems of representation and the development of mathematical concepts. In A. A. Cuoco, & F. R. Curcio (Eds.), The role of representation in school mathematics (pp. 1-23). National Council of Teachers of Mathematics.
- Hamley, H. R. (1934). The function concept in school mathematics. The Mathematical Gazette, 18(229), 169-179. https://doi.org/10.2307/3606815
- Hannula, J. (2019). Characteristics of teacher knowledge produced by pre-service mathematics teachers: The case of open-ended problem-based learning. LUMAT: International Journal on Math, Science and Technology Education, 7(3), 55-83. https://doi.org/10.31129/LUMAT.7.3.391
- Hartung, M. L. (1962). Formalism in arithmetic programs. The Arithmetic Teacher, 9(7), 371-375. https://doi.org/10.5951/AT.9.7.0371
- Henry, P. (1995). On mathematics at the time of the enlightenment, and related topics. In B. Göranzon (Ed.), Skill, technology and enlightenment: On practical philosophy (pp. 311-325). Springer. https://doi.org/10.1007/978-1-4471-3001-7_31
- Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. In J. Hiebert (Ed.), Conceptual and procedural knowledge (pp. 1-27). Routledge.
- Hillmayr, D., Ziernwald, L., Reinhold, F., Hofer, S. I., & Reiss, K. M. (2020). The potential of digital tools to enhance mathematics and science learning in secondary schools: A context-specific meta-analysis. Computers & Education, 153, 103897. https://doi.org/10.1016/j.compedu.2020.103897
- Howson, A. G., & Kahane, J. P. (1986). The influence of computers and informatics on mathematics and its teaching. Cambridge University Press.
- Hwang, G. J., & Tu, Y. F. (2021). Roles and research trends of artificial intelligence in mathematics education: A bibliometric mapping analysis and systematic review. Mathematics, 9(6), 584. https://doi.org/10.3390/math9060584
- Illeris, K. (2007). What do we actually mean by experiential learning? Human Resource Development Review, 6(1), 84-95. https://doi.org/10.1177/1534484306296828
- Jablonka, E. (2015). The evolvement of numeracy and mathematical literacy curricula and the construction of hierarchies of numerate or mathematically literate subjects. ZDM Mathematics Education, 47, 599-609. https://doi.org/10.1007/s11858-015-0691-6
- Jahnke, H. N., Jankvist, U. T., & Kjeldsen, T. H. (2022). Three past mathematicians’ views on history in mathematics teaching and learning: Poincaré, Klein, and Freudenthal. ZDM Mathematics Education, 54(7), 1421-1433. https://doi.org/10.1007/s11858-022-01376-0
- Kayes, D. C. (2002). Experiential learning and its critics: Preserving the role of experience in management learning and education. Academy of Management Learning & Education, 1(2), 137-149. https://doi.org/10.5465/amle.2002.8509336
- Kilpatrick, J. (2020). History of research in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education. Springer. https://doi.org/10.1007/978-3-030-15789-0_71
- Klančar, A., Cotič, M., & Žakelj, A. (2019). Učenje in poučevanje geometrije z uporabo informacijsko-komunikacijske tehnologije v osnovni šoli [Learning and teaching geometry using ICT in elementary school]. Založba Univerze na Primorskem [Publishing House of the University of Primorska]. https://doi.org/10.26493/978-961-7055-63-4
- Kolb, A. Y., & Kolb, D. A. (2005). Learning styles and learning spaces: Enhancing experiential learning in higher education. Academy of Management Learning & Education, 4(2), 193-212. https://doi.org/10.5465/amle.2005.17268566
- Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. Prentice-Hall.
- Linn, M. C., Davis, E. A., & Bell, P. (2013). Internet environments for science education. Routledge. https://doi.org/10.4324/9781410610393
- Litster, K., MacDonald, B., & Shumway, J. F. (2020). Experiencing active mathematics learning: Meeting the expectations for teaching and learning in mathematics classrooms. The Mathematics Enthusiast, 17(2), 615-640. https://doi.org/10.54870/1551-3440.1499
- Liu, R., Liu, C., & Ren, Y. (2018). A virtual reality application for primary school mathematics class. In Proceedings of the 2018 International Symposium on Educational Technology (pp. 138-141). IEEE. https://doi.org/10.1109/ISET.2018.00038
- Logan, R. K., & Pruska-Oldenhof, I. (2022). Mathematics, deductive logic and abstract science. In A topology of mind: Spiral thought patterns, the hyperlinking of text, ideas and more (pp. 39-52). Springer. https://doi.org/10.1007/978-3-030-96436-8_4
- Maaß, K., & Artigue, M. (2013). Implementation of inquiry-based learning in day-to-day teaching: A synthesis. ZDM Mathematics Education, 45, 779-795. https://doi.org/10.1007/s11858-013-0528-0
- Malaty, G. (1998). Eastern and western mathematical education: Unity, diversity, and problems. International Journal of Mathematical Education in Science and Technology, 29(3), 421-436. https://doi.org/10.1080/0020739980290311
- Man-Keung, S. (2000). The ABCD of using history of mathematics in the (undergraduate) classroom. Paleontological Society Papers, 6, 3-10.
- Martín-Gutiérrez, J., Mora, C. E., Añorbe-Díaz, B., & González-Marrero, A. (2017). Virtual technologies trends in education. EURASIA Journal of Mathematics, Science and Technology Education, 13(2), 469-486. https://doi.org/10.12973/eurasia.2017.00626a
- Mesquida, P., Pereira, F. I., & Bernz, M. E. (2017). The Pestalozzi method: Mathematics as a way to the truth. Creative Education, 8(7), 1088. https://doi.org/10.4236/ce.2017.87078
- Monalisa, L. A., Hastuti, Y., Hussen, S., & Oktavianingtyas, E. (2019). The implementation of research based learning in developing the students mathematical generalization thinking skills in solving a paving blocks design problem. IOP Conference Series: Earth and Environmental Science, 243, 012168. https://doi.org/10.1088/1755-1315/243/1/012168
- Mystakidis, S., Berki, E., & Valtanen, J. P. (2021). Deep and meaningful e-learning with social virtual reality environments in higher education: A systematic literature review. Applied Sciences, 11(5), 2412. https://doi.org/10.3390/app11052412
- O’Brien, T. C., Wallach, C., & Mash-Duncan, C. (2011). Problem-based learning in mathematics. The Mathematics Enthusiast, 8(1), 147-160. https://doi.org/10.54870/1551-3440.1209
- OECD. (2023). PISA 2022 mathematic framework. OECD Publishing. https://doi.org/10.1787/7ea9ee19-en
- Oller-Marcén, A. M. (2022). The transition to modern mathematics in Spanish primary education: The 1965 syllabus. In A.Karp (Ed.), Advances in the history of mathematics education (pp. 171-194). Springer. https://doi.org/10.1007/978-3-030-95235-8_7
- Oyekan, S. O. (2000). Foundation of teacher education. Ebunoluwa Printers.
- Peet, T. E. (1931a). A problem in Egyptian geometry. The Journal of Egyptian Archaeology, 17(1), 100-106. https://doi.org/10.1177/030751333101700118
- Peet, T. E. (1931b). Mathematics in ancient Egypt. Bulletin of the John Rylands Library, 15(2), 409-441. https://doi.org/10.7227/BJRL.15.2.6
- Pisano, R., & Bussotti, P. (2015). Fibonacci and the abacus schools in Italy: Mathematical conceptual streams-education and its changing relationship with society. Almagest, 6(2), 126-164. https://doi.org/10.1484/J.ALMAGEST.5.109664
- Rittle-Johnson, B., & Alibali, M. W. (1999). Conceptual and procedural knowledge of mathematics: Does one lead to the other? Journal of Educational Psychology, 91(1), 175-189. https://doi.org/10.1037/0022-0663.91.1.175
- Rittle-Johnson, B., Siegler, R. S., & Alibali, M. W. (2001). Developing conceptual understanding and procedural skill in mathematics: An iterative process. Journal of Educational Psychology, 93(2), 346-362. https://doi.org/10.1037/0022-0663.93.2.346
- Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Henriksson, H. W., & Hemmo, V. (2007). Science education now: A new pedagogy for the future of Europe. European Commission Directorate General for Research Information and Communication Unit. http://ec.europa.eu/research/science-society/document_library/pdf_06/report-rocard-on-science-education_en.pdf
- Roschelle, J., & Teasley, S. D. (1995). The construction of shared knowledge in collaborative problem solving. In C. O’Malley (Ed.), Computer supported collaborative learning. Springer. https://doi.org/10.1007/978-3-642-85098-1_5
- Salas-Pilco, S. Z., Xiao, K., & Oshima, J. (2022). Artificial intelligence and new technologies in inclusive education for minority students: A systematic review. Sustainability, 14(20), 13572. https://doi.org/10.3390/su142013572
- Sattar, M., Palaniappan, S., Lokman, A., Shah, N., Khalid, U., & Hasan, R. (2020). Motivating medical students using virtual reality based education. International Journal of Emerging Technologies in Learning, 15(2), 160-174. https://doi.org/10.3991/ijet.v15i02.11394
- Schoenfeld, A. H. (2007). Problem solving in the United States, 1970-2008: Research and theory, practice and politics. ZDM Mathematics Education, 39, 537-551. https://doi.org/10.1007/s11858-007-0038-z
- Semadeni, Z. (2023). Reforms inspired by mathématique moderne in Poland, 1967-1980. In D. De Bock (Ed.), Modern mathematics: An international movement? (pp. 267-283). Springer. https://doi.org/10.1007/978-3-031-11166-2_13
- Serin, H. (2020). Virtual reality in education from the perspective of teachers. Amazonia Investiga [Amazon Research], 9(26), 291-303. https://doi.org/10.34069/AI/2020.26.02.33
- Sugden, K. F. (1981). A history of the abacus. Accounting Historians Journal, 8(2), 1-22. https://doi.org/10.2308/0148-4184.8.2.1
- Thom, R. (1973). Modern mathematics: Does it exist? In Developments in mathematical education (pp. 194-209). Cambridge University Press. https://doi.org/10.1017/CBO9781139013536.011
- Tohir, M., & Abidin, Z. (2018). Students creative thinking skills in solving two dimensional arithmetic series through research-based learning. Journal of Physics: Conference Series, 1008, 012072. https://doi.org/10.1088/1742-6596/1008/1/012072
- Ulivi, E. (2016). Scuole e maestri d’abaco in Italia tra Medioevo e Rinascimento [Abacus schools and masters in Italy between the Middle Ages and the Renaissance]. In E. Giusti (Ed.), Un ponte sul Mediterraneo: Leonardo Pisano, la scienza araba e la rinascita della matematica in Occidente [A bridge over the Mediterranean: Leonardo Pisano, Arab science and the rebirth of mathematics in the West] (pp. 121-160). Polistampa.
- UNESCO. (1972). New trends in mathematics teaching. https://unesdoc.unesco.org/ark:/48223/pf0000136586
- Viberg, O., Grönlund, Å., & Andersson, A. (2023). Integrating digital technology in mathematics education: A Swedish case study. Interactive Learning Environments, 31(1), 232-243. https://doi.org/10.1080/10494820.2020.1770801
- Xu, W., Meng, J., Raja, S. K. S., Priya, M. P., & Kiruthiga Devi, M. (2023). Artificial intelligence in constructing personalized and accurate feedback systems for students. International Journal of Modeling, Simulation, and Scientific Computing, 14(01), 2341001. https://doi.org/10.1142/S1793962323410015
- Žakelj, A. (2010). Raznovrstnost pristopov k učenju in poučevanju matematike [Diversity of approaches to learning and teaching mathematics]. In S. Kmetič, & M. Sirnik (Eds.), Matematika, posodobitve pouka v gimnazijski praksi (posodobitve pouka v gimnazijski praksi) [Mathematics, updates of lessons in high school practice (updates of lessons in high school practice)] (pp. 15-77). Institute of Education of the Republic of Slovenia.
- Zbiek, R. M. (2003). Using technology to foster mathematical meaning through problem solving. In H. L. Schoen, & R. I. Charles (Eds.), Teaching mathematics through problem solving (pp. 93-104). National Council of Teachers of Mathematics.
How to cite this article
APA
Cotič, M., Doz, D., Jenko, M., & Žakelj, A. (2024). Mathematics education: What was it, what is it, and what will it be?. International Electronic Journal of Mathematics Education, 19(3), em0783. https://doi.org/10.29333/iejme/14663
Vancouver
Cotič M, Doz D, Jenko M, Žakelj A. Mathematics education: What was it, what is it, and what will it be?. INT ELECT J MATH ED. 2024;19(3):em0783. https://doi.org/10.29333/iejme/14663
AMA
Cotič M, Doz D, Jenko M, Žakelj A. Mathematics education: What was it, what is it, and what will it be?. INT ELECT J MATH ED. 2024;19(3), em0783. https://doi.org/10.29333/iejme/14663
Chicago
Cotič, Mara, Daniel Doz, Matija Jenko, and Amalija Žakelj. "Mathematics education: What was it, what is it, and what will it be?". International Electronic Journal of Mathematics Education 2024 19 no. 3 (2024): em0783. https://doi.org/10.29333/iejme/14663
Harvard
Cotič, M., Doz, D., Jenko, M., and Žakelj, A. (2024). Mathematics education: What was it, what is it, and what will it be?. International Electronic Journal of Mathematics Education, 19(3), em0783. https://doi.org/10.29333/iejme/14663
MLA
Cotič, Mara et al. "Mathematics education: What was it, what is it, and what will it be?". International Electronic Journal of Mathematics Education, vol. 19, no. 3, 2024, em0783. https://doi.org/10.29333/iejme/14663