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 This paper describes the design, implementation, and results of a training action with prospective primary 

education teachers, focusing on the creation of problems involving proportional and algebraic reasoning. 

Prospective teachers must solve a proportionality problem using both arithmetic and algebraic procedures, and 

then vary it to motivate proto-algebraic activity. Results show that participants successfully solved the task and 
created significant problems, which mostly motivated the expected algebraic activities. However, it can be 

observed that aspects of proportional reasoning or representations typical of proto-algebraic levels were not 

considered, which could have generated greater richness in the variety of problems created. 
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INTRODUCTION 

The relationship between the level of knowledge of the mathematics teacher and the learning achievement of their students 

justifies the interest in determining the type of didactic-mathematical knowledge that prospective teachers should possess. It is 

accepted that teachers must know the mathematics they are to teach their students. In particular, they must be competent to 

solve the problems that the curriculum proposes at the educational level at which they perform their teaching duties. However, 

there is also a broad consensus that these knowledge and competence do not guarantee effective teaching. The teacher requires 

specialized knowledge of the content itself, the transformations that must be applied to it in teaching and learning processes, and 

psychological and pedagogical factors, among others, that condition these processes. Therefore, from the research on 

mathematics education, it is necessary to design and implement formative experiences that characterize and promote the 

development of knowledge and professional competencies in teachers (Chapman, 2014; English, 2008; Ponte & Chapman, 2016). 

Specifically, various researchers have highlighted the importance of incorporating problem creation into teacher training 

programs (Grundmeier, 2015; Malaspina et al., 2019). They recognize problem creation as an appropriate way to introduce 

prospective primary school teachers (PPTs) to mathematics teaching (Leavy & Hourigan, 2020), allowing them to deeply explore 

mathematical content, become aware of their potential shortcomings (Tichá & Hošpesová, 2013), and enhance their overall 

analysis of mathematical activity (Malaspina et al., 2019). 

Considering problem creation as a means to assess, articulate, and develop the knowledge and competencies of mathematics 

teachers (Ellerton, 2013; Malaspina et al., 2015; Mallart et al., 2018; Milinković, 2015; Tichá & Hošpesová, 2013), this research 

describes the results of a formative intervention with PPTs, focused on creating problems involving proportional and algebraic 

reasoning. 

Different theoretical perspectives and curricular proposals have been recommending the incorporation of algebraic content 

from the early educational levels with the aim of enriching school mathematical activity and facilitating access to mathematics in 

secondary education (Carraher & Schliemann, 2018; Kieran, 2022). Enhancing forms of algebraic reasoning in the early years of 

schooling requires a broader perspective on the nature of school algebra (Godino et al., 2014), understanding that algebraic 

reasoning occurs in “all activities aimed at developing in students an attitude to seek regularities, relationships, and properties, 

and to express them first in natural language and then in algebraic language” (Malara & Navarra, 2018, p. 54). According to Blanton 

et al. (2015), early algebra can be developed through five major ideas:  

(1) generalized arithmetic,  

(2) equivalence, expressions, equations, and inequalities, 

(3) functional thinking,  

(4) variable, and  
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(5) proportional reasoning.  

Proportional reasoning emerges as a precursor to students’ algebraic reasoning (Lundberg & Kilhamn, 2018). It involves 

“algebraically reasoning about two generalized quantities that are related in such a way that the relationship of one quantity to 

the other is invariant” (Blanton et al., 2015, p. 43). However, the development of proportional and algebraic reasoning in children 

requires specific initial training for prospective teachers. 

Prospective teachers need to have knowledge of algebra and what its teaching entails in elementary school to later apply it in 

their practice and create teaching situations that develop their students’ algebraic thinking (Branco & Ponte, 2012; Pincheira & 

Alsina, 2021). Research, such as that by Stylianou et al. (2019) and Ferreira et al. (2022) among others, highlights the positive effects 

of including algebraic practices in teacher training on students. In particular, proposing actions to promote generalization 

contributes to understanding the meaning of algebraic reasoning and how to foster it in elementary students (Ferreira et al., 2022). 

Despite its importance, research results, such as those by Ferreira et al. (2022), Hohensee (2017), and Zapatera and Quevedo (2021) 

among others, show that prospective teachers’ algebraic knowledge is insufficient. In the specific context of problem creation, 

Zapatera and Quevedo (2021) proposed that PPTs develop tasks to foster algebraic reasoning in elementary students based on 

two open-ended situations. However, almost all participants transformed both open-ended situations, which had multiple 

possibilities for promoting and developing algebraic thinking, into closed problems with a single solution, which they mostly 

solved arithmetic. The authors recommended including in teacher training programs experiences that allow prospective teachers 

to design tasks to detect and promote algebraic thinking in their students. 

Similarly, research analyzing the didactic-mathematical knowledge necessary for teaching proportionality has shown the 

difficulties preservice or in-service teachers face in teaching concepts related to proportional reasoning (Buforn et al., 2020; Burgos 

& Godino, 2022; Hilton & Hilton, 2019; Weiland et al., 2020). The results of previous studies also revealed the challenges that 

prospective elementary and secondary school teachers may encounter when creating meaningful proportionality problems (Tichá 

& Hošpesová, 2013; Xie & Masingila, 2017). They propose problems that are not suited to the educational level, are incorrect, or 

are irrelevant to the development of proportional reasoning in their students (Burgos & Chaverri, 2022, 2023). 

In this context, the results presented in this paper are part of a larger line of research aimed at designing, implementing, and 

evaluating formative interventions intended to develop proportional and algebraic reasoning in prospective elementary school 

teachers through the solving, analysis, and creation of tasks (Burgos & Godino, 2022; Tizón-Escamilla & Burgos, 2023). 

THEORETICAL FRAMEWORK AND RESEARCH PROBLEM 

In our research, we position ourselves from the perspective of the onto-semiotic approach (OSA) to mathematical knowledge 

and instruction (Godino, 2024). Below, we include the theoretical-methodological tools developed by this framework, which are 

essential to our research. We position problem creation as both an objective and a means for teacher training and define the 

research questions. 

Pragmatic Meaning and Elementary Algebraic Reasoning Levels 

From the pragmatist perspective of didactic-mathematical knowledge adopted by the OSA, the notions of mathematical 

practice and system of practices determine the starting point for analyzing mathematical activity (Godino, 2024). Mathematical 

practices, understood as any action aimed at solving a problem or performing a task, imply the capacity or competence of the 

person conducting the practice. However, competent execution of a practice involves the intervention of various interconnected 

objects that regulate and emerge from it. The term “object” is used broadly to refer to any entity that is in some way involved in 

mathematical practice and can be distinguished from others; the pragmatic meaning of an object is understood as the system of 

practices associated with the problem field from which the object emerges at a given moment. 

Considering their nature and role in mathematical practices, the following typology of mathematical objects is proposed: 

problem situations, languages in their various registers, concepts, propositions, procedures, and arguments. The emergence of 

these primary objects occurs through the respective mathematical processes of problematization, communication, definition, 

formulation, procedural development (algorithmization), and argumentation (Godino, 2024). In particular, as a result of a 

generalization process, a type of mathematical object known in the OSA framework as an intensive object is obtained. This is the 

rule that generates the class (collection or set) of generalized objects and allows the identification of a particular element as a 

representative of the class. Through the particularization process, the new objects obtained are referred to as extensive (particular) 

objects. 

Within the framework of OSA, a characterization of elementary algebraic reasoning (EAR) has been proposed, distinguishing 

four levels of reasoning (Aké et al., 2013; Godino et al., 2014), establishing criteria to identify purely arithmetic mathematical 

activity and to differentiate it from progressive levels of algebraization. The EAR levels model allows teachers to understand the 

characteristics of EAR through the identification of its characteristic objects and processes. The levels are defined based on the 

objects and processes emerging in the mathematical activity of a given individual when solving a specific problem. The criteria for 

distinguishing early EAR levels are, as follows: 

− Level 0: Operates with first-degree generality intensive objects, using natural, numeric, iconic, or gestural languages. 

− Level 1: Uses second-degree generality intensive objects, properties of the algebraic structure of ℕ , and equality as 

equivalence. Symbols may refer to recognized intensives, but without operating with these objects. 
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− Level 2: Uses symbolic-literal representations to refer to recognized intensive objects related to contextual information; 

solves equations of the form 𝐴𝑥 +  𝐵 = 𝐶 (𝐴, 𝐵, 𝐶 𝜖 ℝ) 

− Level 3: Symbols are used analytically without reference to contextual information. Operations are performed using 

indeterminates or variables; solves equations of the form 𝐴𝑥 +  𝐵 = 𝐶𝑥 + 𝐷 (𝐴, 𝐵, 𝐶, 𝐷 𝜖 ℝ). 

Solving an equation of the type 𝐴𝑥 +  𝐵 = 𝐶  often involves simply reversing the operations; thus, it is considered an 

arithmetic equation. Contrarily, an equation of the form 𝐴𝑥 +  𝐵 = 𝐶𝑥 + 𝐷 is termed an algebraic equation because solving it 

requires more than just undoing the indicated operation; it necessitates working with the unknown (Kilhamn et al., 2019).  

The definition of algebraization levels is based on the presence of intensive algebraic objects (binary relations and their 

properties, operations and their properties, functions, and structures), the transformations applied to these objects (syntactic 

calculation, representation, generalization), and the type of language used. Level 0 indicates the absence of algebraic 

characteristics (arithmetic nature of the mathematical activity), while level 3 represents a consolidated algebraic activity 

(syntactically guided reasoning, actions on generalizations expressed in conventional symbol systems). Intermediate levels of 

proto-algebraic activity (level 1 and level 2) align with the proposal of early algebra (Carraher & Schliemann, 2018), distinguishing 

them from more established or consolidated forms of algebraic reasoning. 

The application of EAR levels to practice systems related to proportionality tasks provides criteria to distinguish meaning 

categories in the progressive construction of proportional reasoning (Burgos & Godino, 2020), which is understood as the system 

of actions (operational and discursive practices) involved in solving proportionality problems. The arithmetic meaning of 

proportionality (EAR level 0) is characterized by the application of arithmetic calculation procedures (multiplication, division) to 

specific numerical values; no algebraic objects or processes are involved. The proto-algebraic meaning focuses on the concepts 

of ratio and proportion: recognizing the unit value in a unit rate procedure and using diagrammatic representations of solutions 

are associated with EAR level 1; solving a missing value problem through the formulation and solution of a proportional equation 

(where the unknown appears on only one side of the equation) is characteristic of EAR level 2. The algebraic-functional meaning, 

EAR level 3, is defined by the application of the concept of linear function and problem-solving techniques based on the properties 

of these functions. 

Didactic-Mathematical Knowledge and Competencies of the Teacher 

The model of categories of didactic-mathematical knowledge and competences of the teacher developed in the OSA (Godino 

et al., 2017) assumes that the teacher must have mathematical knowledge per se, coordinating common mathematical knowledge 

related to the educational level at which they teach, with an extended knowledge of mathematical content from higher levels. 

However, as any mathematical content is put into play, the teacher must have didactic-mathematical knowledge of the different 

facets that affect the planning and management of a specific mathematical topic: epistemic (about the content itself and the 

institutional reference meanings), ecological (guiding tasks according to the mandatory institutional curriculum), cognitive 

(understanding the student’s thinking), affective (reacting to the anxiety, indifference, anger, etc., manifested by the students), 

interactional (identifying and responding to student conflicts and interactions), and mediational (choosing the most appropriate 

resources for teaching). 

In this work, we focus primarily on the epistemic aspect of didactic-mathematical knowledge, which refers to the specialized 

knowledge about the content itself, that is, the particular way in which a mathematics teacher knows and understands 

mathematics. Teachers, in addition to the mathematics that allows them to solve problems, must be able to comprehend and 

mobilize the diversity of partial meanings of a specific mathematical object, solve mathematical tasks through different 

procedures, provide various justifications, and identify the knowledge involved during the process of solving a mathematical task. 

The teacher must be competent to determine the configurations of mathematical objects and processes involved in the 

practices enacted in the intended meanings of the content (epistemic and institutional configurations), as well as the 

configurations that students use when solving problems (cognitive and personal configurations) (Godino et al., 2017). Moreover, 

teachers’ recognition of the different levels of EAR when solving mathematical tasks and their ability to modify problems to 

promote algebraic reasoning in a specific content area (particularly proportionality) is considered a key aspect of the teacher’s 

didactic-mathematical knowledge (Burgos & Godino, 2022; Godino et al., 2014). 

Creation of Problems With Educational-Mathematical Purpose 

Problem creation is a fundamental skill that enhances the didactic-mathematical knowledge of mathematics teachers; 

therefore, problem creation should be an objective in teacher training programs. Although different authors have given various 

names to the activity of creating problems, it essentially involves both the formulation of new situations and the reformulation of 

given problems. To determine what creating a problem entails, it is important to specify the elements that characterize a 

mathematical problem. According to Malaspina et al. (2015), these elements are, as follows:  

(1) the information, that is, the quantitative or relational data provided in the problem,  

(2) the requirement, what is asked to be found, examined, or concluded (this can be quantitative or qualitative, including 

graphs and proofs),  

(3) the context (intra- or extra-mathematical) which determines the environment or scenario that gives rise to the 

mathematical activity, and  

(4) the mathematical environment or mathematical structure that encompasses the mathematical concepts involved or that 

may be involved in solving the problem, their properties, and relationships. 

Based on these elements, Burgos et al. (2024) proposed the following categories of problem creation: 
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− Free or unstructured elaboration. There is no initial (structured) problem situation, and no guidelines, instructions, or 

restrictions are provided regarding the components (context, environment, information, and requirements) of the new 

problem. 

− Semi-structured elaboration. There is no base problem situation; however, information or restrictions about the elements 

of the new problem are included. 

− Structured elaboration or variation. A problem is posed based on a previous one, such that the different elements (context, 

information, requirements, and mathematical environment) are known. Within the category of structured elaboration, it 

is considered to modify the information, change the requirements, exchange information and requirements, add new 

information, or pose new questions. 

Teachers can develop problems, both in semi-structured and structured cases (variation), to address a didactic-mathematical 

purpose, such as involving certain mathematical objects (epistemic dimension) or responding to a certain level of cognitive 

demand (cognitive dimension), among others. Specifically, the competence of analyzing global meanings (identification and 

description of operative and discursive practices involved in mathematical activity) and the competence of onto-semiotic analysis 

of practices (recognizing the configuration of objects and processes involved and emerging from mathematical practices) of the 

teacher (Godino et al., 2017) are fundamental in creating problems for didactic purposes. Conversely, the creation of problems 

with a didactic purpose serves as a means to develop these competencies, since this process requires: reflecting on the overall 

structure of the problem (what it aims to achieve and whether the provided information is sufficient to solve it); analyzing possible 

ways to solve it and the mathematical objects and processes involved and how they relate (the mathematical structure); and 

recognizing possible difficulties that students may encounter and how to address them in the formulation of new situations. 

Research Problem 

The research problem addressed in this article is the design, implementation, and evaluation of a training activity for PPTs to 

integrate proportional and algebraic reasoning through the creation of problems. In this way, we continue the line of work initiated 

by Burgos and Godino (2022), and Tizón-Escamilla and Burgos (2023). Burgos and Godino (2022) required prospective teachers to 

create problems by structuring proportionality tasks in an arithmetic context so that the solution involved changes in the algebraic 

reasoning involved. In Tizón-Escamilla and Burgos (2023), prospective teachers were asked to create a problem that involved 

proportional reasoning from a semi-structured situation in a probabilistic context (run context) and then modify it to increase the 

algebraic reasoning involved. In both cases, participants had difficulties in creating meaningful problems that mobilized 

proportional reasoning to address a certain degree of algebraic reasoning, especially when this had to correspond to intermediate 

levels. These results led us to consider the need to  

(1) reinforce the training of prospective teachers, both in problem creation and in the study of algebraic objects and processes 

(particularly concerning proportionality) and  

(2) focus more specifically on the development of proto-algebraic mathematical activity, better adapted to primary education 

stages, where algebraic reasoning is incipient (Godino et al., 2014). 

Specifically, we pose the following research questions: 

1. Are PPTs capable of proposing different solutions to the same proportionality problem by exclusively involving arithmetic 

or algebraic procedures? 

2. How do PPTs modify a proportionality problem so that its solution involves a different level of algebraic reasoning than 

the original problem? 

METHODOLOGY 

Given the nature of the research problem, we adopted the methodology of didactic engineering, understood in the generalized 

sense proposed by the OSA (Godino et al., 2013). This interpretation distinguishes four phases in the research: preliminary study 

(in its various epistemic-ecological, cognitive-affective, and instructional facets), experiment design (task selection, sequencing, 

and a priori analysis), implementation (observation and evaluation of the achieved learning outcomes), and retrospective analysis 

(derived from the contrast between what was planned in the design and what was observed during implementation). Additionally, 

content analysis (Cohen et al., 2018) is used to examine the response protocols of PPTs who participated in the training experience. 

Research Context, Participants, and Data Collection 

The training experience was implemented with 62 third-year students from the primary education degree program. During 

their degree studies, the student teachers have received specific training on epistemic aspects (mathematical knowledge), 

cognitive aspects (learning, errors, and difficulties), instructional aspects (tasks, activities, materials, and resources), and 

curricular aspects of mathematics teaching. At the time of developing the experience, it was expected that the participants would 

be able to put their acquired knowledge into practice to solve, design, and sequence mathematical tasks on specific content, in 

our case, proportional and algebraic reasoning. 

Design and Implementation 

The training activity was carried out over 6 sessions, each lasting two hours. Table 1 describes the didactic trajectory (Godino, 

2024, chapter 4) implemented and the content covered in the different sessions. These sessions are of two types:  
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(1) theoretical-practical (large group) sessions where the theoretical content described in Table 1 is presented and 

exemplified through guided work in small groups and collective discussion and  

(2) practical sessions (in small groups of 4 or 5 students) where the participants work on the tasks provided by the instructor 

as a continuation of the previous theoretical-practical work. 

Group work allows students to compare and enrich their proposals for various strategies to create and solve problems, identify 

potential difficulties within them, and assess their potential for developing algebraic thinking. After each practical session, 

students submit their work to the teacher (the first author of this paper); she reviews it and prepares a report on the task that she 

shares and discusses with the students in each group before the next class session. The feedback from the teacher consisted 

primarily of  

(1) discussions with the students and evaluations of their work on the analysis of practices, objects, and processes in solving 

school mathematical tasks (reflecting on the typology and nature of mathematical objects and processes) and  

(2) discussions about the significance of tasks created by the students (when a task is not significant and why) and their 

potential to meet educational objectives (involving specific mathematical content or addressing students’ difficulties). 

Instrument and Data Analysis 

After these sessions, the PPTs worked individually on the task described below as an optional (voluntary) part of the final 

course assessment (Table 1). All students participated in the experience. 

Consider the following problem:  

A student received a certain amount of money from their parents to cover meals for 40 days. However, they found a place 

where they could save 4 euros per day on food. As a result, the initial budget lasted 60 days. How much money did the 

student receive?  

a) Can the problem be solved by using purely arithmetic procedures? How?  

b) Can the problem be solved by using algebraic knowledge? How?  

c) Create variations of this problem, with each variation involving changes in the required level of algebraic reasoning. 

Solve these variations and justify the assigned level. 

The goal of this task is to assess the flexibility of PPTs in solving problems using strategies of varying degrees of algebraic 

reasoning, as well as in modifying problems to induce changes in the algebraic nature of the practices they prompt. It also aims to 

evaluate their understanding of the curriculum and students’ knowledge and how they apply this understanding in creating these 

problems. 

Figure 1 describes the elements that characterize the base problem situation and illustrates the process of variation within it. 

Three variables are involved: the money received, the price of the daily menu, and the number of days the student can eat with 

Table 1. Implemented didactic trajectory 

Session Type Contents 

Session 1 

Analysis of mathematical 

practices 

Theoretical-practical • Mathematical practices 

• Mathematical objects and processes 

Session 2 

Analysis of school 
mathematical tasks 

Theoretical-practical • School mathematical tasks 

• Characteristics of a task: mathematical environment, purpose, degree of complexity, 

potential resolution difficulties, material and temporal resources 

Session 3 

Analysis of school 

mathematical tasks 

Practical. 
Collaborative work 

• Analysis of practices, objects, and processes in the solution of school mathematical tasks 

(some of them involving proportionality) 

Session 4 

Creation of mathematical 

tasks 

Theoretical-practical • Elements of a task: context, environment, requirement, information 

• Ways to create mathematical tasks: free, semi-structured, structured 

• Didactic purpose in the creation of mathematical tasks 

Session 5 

Algebraic sense 

Theoretical-practical • School algebraic reasoning 

• Algebraic objects and processes 

• EAR level model 

• Tasks to develop algebraic reasoning 

Session 6 

Creation of mathematical 

tasks 

Practical. 
Collaborative work 

• Structured and semi-structured task creation in arithmetic, geometric, and probabilistic 

contexts 

• Didactic-mathematical epistemic purpose: 

(a) Use of the properties of the proportionality relationship 

(b) Develop algebraic reasoning 

(Optional) Individual assessment task 
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the received money. Each pair of these variables is related either directly or inversely, while the other remains constant. Thus, 

when the money received is constant, the daily menu cost and the number of days the student can eat are inversely proportional. 

However, if the menu cost is constant, the number of days the student can eat is directly proportional to the money received for 

that purpose. The number of days covered by the initial budget, the difference between the initially planned menu cost and the 

price of the cheapest menu found (the savings), and the number of days the student could eat with this last menu are known. The 

amount of money received by the student is unknown. PPTs must interpret and decompose the problem text, giving meaning to 

the information and requirements. This allows them to place the involved quantities within the mathematical context 

(idealization, generalization) and understand how they relate to each other (mathematical structure). Solving the base problem 

(which involves processes of particularization, representation, and syntactic calculation, among others) provides new 

information. Analyzing the mathematical practices of the proposed solution (relationships between quantities, EAR level involved) 

enables the PPTs to decide how to modify the problem (which data to keep, what the new requirement and context will be) so 

that the new problem (composition, problematization) aligns with the established didactic-mathematical objective. Given that 

the initial problem needed to be solved through arithmetic procedures (EAR level 0) and algebraic procedures (EAR level 3), it was 

expected that PPTs would create problems through variation of the base, motivating an activity of a proto-algebraic nature (EAR 

level 1 and level 2). 

The researchers conducted a descriptive analysis of a portion of the participants’ reports, discussing possible discrepancies 

among themselves and collaboratively agreeing on the categories resulting from the analysis. After filtering the categories, all the 

PPTs’ responses were reanalyzed.  

For each problem created by the PPTs, we analyzed: 

1. Whether it is significant. A problem is considered significant if the proposed statement genuinely presents a mathematical 

problem and the elements that characterize it are clearly identified. Specifically, the solution is not implied in the 

statement, it is possible to answer the requirement with the information given, its wording is clear, and it does not present 

any ambiguity. A problem is considered partially significant if it is clearly written, the solution is not implied in the 

statement, but it includes more information than necessary to solve the problem, which could hinder students’ 

understanding. For example, the problem created by PPT24 is considered partially significant: “A student received €600 

from their parents for food and €80 for transportation to the university canteen for 40 days. How much can they spend on 

food per day?” (the information about the money received for transportation is unnecessary to answer the question). In 

another case, a problem is considered not significant if its wording is confusing, it presents ambiguities, the solution is 

implied, or it lacks data necessary to solve it. 

2. Whether it is a variation of the initial situation and of what type. A problem is considered a variation of the base problem if 

it shares any of its elements: context, information, requirement, and mathematical environment (Figure 1). Variations are 

classified based on which of these elements they modify and what type of problems they generate. 

3. Whether its solution involves changes in the involved EAR level and how it does so. 

 

Figure 1. Diagram of the problem creation process through variation to address the didactic-mathematical purpose (Source: 

Authors’ own elaboration) 
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RESULTS 

In this section, we present the analysis of the PPTs’ responses to the proposed evaluation task. Although, due to space 

limitations, we do not show the results of the previous collaborative work sessions in this article, it is interesting to briefly mention 

the observations to provide a clearer idea of the progress of the participants. The evaluation of the reports produced by the PPTs 

in the sixth practice session (Table 1) revealed the difficulties PPTs faced in creating mathematical problems that involved 

proportional reasoning in different contexts. Less than half created relevant problems that involved proportional reasoning and 

met the didactic-mathematical objective: using properties of the proportionality relationship and distinguishing between 

proportional and additive situations. Furthermore, only one-fourth of the groups of prospective teachers created meaningful 

problems that activated algebraic reasoning and appropriately assigned their EAR levels. 

Resolution: Arithmetic vs. Algebraic Strategies 

Out of the 62 participants, one PPT did not solve the problem, and two others did so incorrectly (both in part a and b) because 

of a misinterpretation of the requirement, or the information provided. 

First, the participants were required to solve the problem using exclusively arithmetic procedures. Of the 61 participants who 

responded to the prompt, one solved it correctly but used an algebraic method (the same as in the next item), and four explicitly 

stated that it was not possible to solve the task without resorting to algebraic practices. For example, participant PPT57 argued 

that “it is not possible since, without all the necessary data and the appearance of unknowns in the problem, it is impossible to 

calculate the amount of money received without using some level of algebraic reasoning.” Except for one participant who used 

trial-and-error, the remaining 55 participants solved it in a manner similar to that of participant PPT3, whose solution is shown in 

Figure 2. 

Although it was not required to justify the arithmetic nature of the proposed solutions, 15 PPTs were based, like PPT3 (Figure 

2), on the intervention of particular natural numbers to which arithmetic operations (typical of an EAR level 0) were applied. Even 

though it is not common, some PPTs consider that the arithmetic solution is derived from the algebraic solution by translating the 

process followed in the algebraic solution into natural language and arithmetic operations. 

Next, the PPTs had to propose solutions to the problem with algebraic features. Six PPTs followed proto-algebraic strategies: 

four of them adapted the same arithmetic strategy they had used in the previous section, using literal symbols to indicate 

unknowns and general relationships (for example 𝐷 for the number of days, 𝐷 × 4 for the amount of euros saved, PPT20) but 

without operating with these (EAR level 1); the other two posed and solved the equation 
𝑥

60
=

4×40

20
, where x is the amount of money 

received (EAR level 2). Of the remaining 55 PPTs who solved the problem, 24 proposed a system of equations (Figure 3), in which 

one equation establishes the relationship between the expected daily cost and the actual cost, and the other is an inverse 

proportionality equation that relates the price of the daily menu to the number of days it is possible to eat at that price. 

The remaining 31 students directly formulated the equation 40𝑥 = 60(𝑥 − 4), indicating that x represents the initial amount 

of money planned for daily meals and that 𝑥 − 4 is the actual amount spent on daily meals. In no case did they mention the inverse 

proportionality relationship between the magnitudes in their solutions. 

Creation of Problems by Variation: Seeking Proto-Algebraic Activity 

All participants except two created at least one problem. In fact, half of the PPTs proposed two, and three PPTs managed to 

develop three problems. As a result, a total of 96 problems were analyzed. 

 

Figure 2. Arithmetic solution to the base problem (PPT3) (Source: Authors’ own elaboration) 

 

Figure 3. Algebraic solution (EAR level 3) to the base problem (PPT61) (Source: Authors’ own elaboration) 
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To meet the objective of the task, the created problem had to be a variation of the base problem and motivate changes in the 

EAR level involved in the solution. Table 2 summarizes the frequency of problems created according to their significance and 

whether they are variations or not, considering the EAR level involved in the solution of the new problem. 

As shown in Table 2, most problems were significant. Those that were partially significant included unnecessary information, 

or the regularity condition that allowed solving the proportionality situation was not explicit. Non-significant problems could not 

be solved with the provided information. 

Although 49 PPTs (81.67% of the participants) created at least one significant problem, 17 (27.42% of the total) did not succeed 

in doing so due to variations of the base problem. These PPTs developed problems that mostly led to the formulation of algebraic 

equations (which also did not prompt a change in the EAR level), as illustrated in Figure 4. 

In contrast, 32 PPTs (53% of the total) created significant problems by varying the initial problem. The following categories 

have been identified in the significant problems created through variation: 

1. The form is maintained, but information and requirements are exchanged. In this case, two types of exchanges occur:  

1.1. The received money becomes a known datum (information), and the question relates to the amount of daily savings 

(requirement) (problem 1 in Figure 5).  

1.2. The received money becomes a known datum (information), and the question arises about how many more days could 

be eaten (requirement) (problem 2 in Figure 5). 

2. The form is maintained; an element (information or requirement) is changed, while the rest remains the same. Three 

situations are presented: 

2.1.  Only the data are changed (Figure 6, problem a).  

2.2.  The requirement is modified, changing the question to daily expenditure (sufficient to determine the received money) 

(Figure 6, problem b). 

2.3. A new requirement is added to the base problem (Figure 6, problem c). 

Table 2. Classification of problems by EAR level, significance, and variation (n = 96) 

EAR 
Significant 

Partially significant No significant Total 
Variation No variation 

Level 0 9 5 5 1 20 (20.83%) 

Level 1 16 2 6 4 28 (29.17%) 

Level 2 18 7 2 2 29 (30.21%) 

Level 3 13 5 1 0 19 (19.79%) 

Total 56 (58.83%) 19 (19.79%) 14 (14.58%) 7 (7.29%) 96 (100%) 
 

 

Figure 4. Problem proposed (no variation) by PPT30 (solution and assignment of EAR level) (Source: Authors’ own elaboration) 

 

Figure 5. Problems proposed by PPT51 in categories 1.1 (problem 1) and 1.2 (problem 2) (Source: Authors’ own elaboration) 
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3. The form of the base problem is changed by modifying both the information and the requirement to transform it into a 

proportionality problem (missing value) between two quantities. The following problems are identified: 

3.1. The daily expenditure for a given number of days is known (information), and the budget is queried (Figure 7, problem 

a). 

3.2. The initial budget and the number of days it was intended for are known, and the money required for a different 

number of days is queried (Figure 7, problem b). 

3.3.  The daily expenditure and the number of days for which the budget was intended are known, and the budget itself is 

queried (Figure 7, problem c). 

4. Distant variation. Although the proportionality context is maintained, only the context and information are partially 

preserved, with the requirement being modified (Figure 8). 

We indicate in Table 3 the frequency of problems in each category. 
 

Table 3. Frequency of types of significant problems created through variation according to their solution EAR level (n = 56) 

Categories 
Solution EAR level 

Total 
L0 L1 L2 L3 

Maintain essentially the form of the base problem      

1.1. Exchange information for requirement (Data: Received money & Question: Daily savings amount). 0 3 2 1 6 

1.2. Exchange information for requirement (Data: Received money & Question: How many days one could eat). 1 1 7 1 10 

2.1. Change only data. 2 0 1 3 6 

2.2. Change only requirement (daily expense, sufficient to respond to money received). 2 3 1 0 6 

2.3. Add another requirement. 0 2 0 0 2 

Modify the form of the base problem  

3.1. Information: Daily expenditure for a given number of days. Requirement: budget. 3 3 0 0 6 

3.2. Information: Initial budget and number of days it was intended for (Requirement: Money needed for a 
different number of days). 

1 6 2 0 9 

3.3. Information: Daily expenditure, number of days for which the budget was intended (Requirement: Received 

money). 
1 1 2 2 6 

4. Distant variation. Partially retain context and information, change requirement. 1 2 2 0 5 

Total 11 21 17 7 56 
 

 

Figure 6. Problems proposed in categories 2.1 (problem a), 2.2 (problem b), and 2.3 (problem c) (Source: Authors’ own elaboration) 

 

Figure 7. Problems proposed in categories 3.1 (problem a), 3.2 (problem b), and 3.3 (problem c) (Source: Authors’ own elaboration) 

 

Figure 8. Problem proposed by PPT54, which belongs to category 4 (Source: Authors’ own elaboration) 
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As shown in Table 3, more than half of the significant problems created through variation essentially retained the form of the 

base problem. In these cases, the most common approach was to exchange information and requirement, so that the received 

money was known and the number of additional days for which one could eat was unknown. Figure 9 shows the problem created 

by PPT13 in this category. 

Additionally, as shown in Table 3, in 67.87% of the cases, the problems were designed to promote proto-algebraic 

mathematical activity (EAR level 1 and level 2), as requested. To “decrease the EAR level”, PPT13 sought to ensure that the 

equation involved in the solution was arithmetic rather than algebraic, thus requiring an EAR level of 2 (Figure 9). In other cases, 

PPTs added information by considering that “by including the value of one of the unknowns that had to be calculated initially and 

thereby changing the information, we reduce and change the level of algebraic reasoning required” (PPT41). 

When PPTs modified the form of the base problem (categories 3.1, 3.2, 3.3, and 4), they usually changed both the information 

and the requirement to transform it into a problem that establishes a direct proportionality relationship between two quantities: 

the received money and the number of days one can eat, with the daily menu cost being a fixed amount. 

The situation exemplified in Figure 10 is quite common: PPTs resorted to solving problems using the rule of three or cross-

multiplication to find problems at EAR level 1. They identified the proportionality relationship and noted that the unknown is not 

operated upon, so the assigned level was appropriate for the proposed practice. However, in no case did they propose problems 

involving the comparison of ratios, which would imply practices characteristic of EAR level 1. Problems requiring determination 

of unit value (reduction to the unit), also characteristic of EAR level 1, were rare. 

Regarding the identification of algebraic objects and processes, it was observed that, except for 5 PPTs who did not assign or 

justify the EAR level of the created problems, the other PPTs identified the EAR levels of the solutions proposed for their problems 

 

Figure 9. Problem 2 created by PPT13 (category 1.2) (solution and assignment of EAR level 2) (Source: Authors’ own elaboration) 

 

Figure 10. Problems created by variation by PPT11 (category 3.2) (solution and assignment of EAR levels) (Source: Authors’ own 

elaboration) 
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and did so correctly in most cases (80% of level 0 problems, 64.28% of level 1 problems, 82.76% of level 2 problems, and 68.42% 

of level 3 problems). Specifically, 59.37% of the created problems involved a change in the EAR level. It is also worth noting that 

the PPTs who created problems at EAR level 0 and justified it correctly had interpreted the prompt as requiring a problem that 

allowed for a non-algebraic solution rather than a solution of a different level from the two previously proposed solutions. 

When PPTs did not correctly identify the EAR level in the solutions to their problems, it was usually because they considered 

that “equality as equivalence” is used when its meaning involved operations (thus recognizing it as level 1, which pertained to 

arithmetic practices) or they believed that the equation formulated was arithmetic when it was actually algebraic (assigning it 

level 2 when it corresponded to level 3). In particular, they focused on the final equation 𝑅𝑥 = 𝑆, which resulted from transforming 

the equation 𝐴𝑥 + 𝐵 = 𝐶𝑥 + 𝐷  or the system of equations, considering that no operations with the unknown were required; 

therefore, they assigned it an EAR level 2. 

CONCLUSIONS 

In addition to being competent in solving the problems they propose to their students, teachers must be capable of selecting, 

modifying, or creating them for specific educational purposes. Achieving this competence requires that teacher training programs 

include the design and implementation of specific actions (Malaspina et al., 2015). However, since creating problems leads 

prospective teachers to “rethink” the nature of mathematical objects before explicit instruction (Kılıç, 2017), these actions also 

contribute to the development of didactic-mathematical knowledge during initial teacher training. 

In this study, we have presented the results obtained by a group of PPTs when varying a proportionality problem with the 

intention of promoting proto-algebraic activity (Godino et al., 2014). PPTs were required to first solve the base problem, proposing 

both an arithmetic and an algebraic solution to a proportionality problem, and then create new problems by variation whose 

resolution mobilized an algebraic activity of a level different from the previous ones. 

Although we did not present the results of the previous collaborative work sessions in this article, we believe that the training 

received and the feedback provided by the teacher have helped the PPTs develop their ability to analyze mathematical activity, 

recognize the algebraic objects involved, and modify problems to address a specific EAR level. In fact, during the practical work 

conducted collaboratively prior to the assessment task, it was observed that PPTs had difficulties identifying mathematical 

objects in the practices, recognizing properties and relationships of proportionality, and creating meaningful significant problems 

that would engage algebraic reasoning. This was, in part, due to a poor and limited understanding of the transition from arithmetic 

to algebra. However, in the assessment task, the PPTs were able to create significant proportionality problems, recognizing that 

they promoted proto-algebraic mathematical activity. Specifically, regarding the first research question, the PPTs were able to 

provide two solutions to the original problem, successfully distinguishing between arithmetic and algebraic activities. These 

results significantly improve upon those obtained by Burgos and Godino (2022), and Tizón-Escamilla and Burgos (2023), who 

found greater difficulties in analyzing the algebraic activity involved in solving proportionality problems by prospective teachers. 

Second, most of the posed problems were meaningful, contrary to previous research findings that identified difficulties in creating 

meaningful proportionality problems by prospective teachers (Burgos & Chaverri, 2022, 2023). Moreover, a good part of the 

problems created were variations of the base problem that mobilized in its resolution an algebraic activity of a different level than 

the arithmetic or algebraic one (didactic-mathematical purpose of the proposed task). Additionally, the PPTs successfully 

identified the EAR level involved in the mathematical activity anticipated as a solution to their problems, which was justified based 

on the algebraic nature of the objects and processes involved. Again, these results represent a notable improvement compared to 

those obtained by Burgos and Godino (2022), and Tizón-Escamilla and Burgos (2023). In these previous experiences, in their 

attempt to achieve a specific EAR level, the PPTs sacrificed the meaningfulness of the statement (the solution was implicit in the 

statement, the problem made no sense, or the information provided by the statement did not allow answering the question). 

Moreover, they considered only “two degrees of algebraization: arithmetic (0) or algebraic (1), depending on the absence or 

presence of unknowns, regardless of how they were treated” (Burgos & Godino, 2022, p. 382). 

Regarding the second research question, we observed that PPTs usually maintain the mathematical structure of the initial 

problem by exclusively modifying the information or requirement or exchanging both elements. To introduce a change in the EAR 

level, they aim for the solving equation to be arithmetic rather than algebraic (Kilhamn et al., 2019), in which case the EAR level is 

2. When aiming for an EAR level of 1, although they pose missing value problems, they solve them using a rule of three without 

setting up the equation or operating with the unknown. Although the assigned level is adequate, from a didactic point of view, this 

practice should be avoided because it “hides” the intervention of ratios and proportion, leading to a “degenerate” meaning of 

arithmetic proportionality. In no case is the problem modified to seek a comparison of ratios, an essential component of 

proportional reasoning, nor are problems posed that are solved through the use of tabular (proto-functional in nature), 

diagrammatic, or graphical registers (Burgos & Godino, 2020), all of which have proto-algebraic characteristics. 

Despite these results showing progress in the knowledge and competencies of the PPTs, we still found limitations that need 

to be addressed in future training designs. In varying the problems to motivate proto-algebraic activity, the focus was on the role 

of syntactic calculation involved (equations), neglecting other objects (relationships, functions) and processes (generalization, 

representation) that modulate the algebraic nature of mathematical practices, as well as the meanings inherent to proto-algebraic 

proportional reasoning. For example, sequences of proportional numbers and their representation using tabular registers 

establish a bridge between the proto-algebraic meaning centered on the idea of ratio and proportion and the strictly algebraic 

focus on the linear function (Burgos & Godino, 2020). In future implementations, it is necessary to: 
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− Reinforce the role of the comparison of ratios as an integral part of proportional reasoning (Buforn et al., 2020; Monje 

Parrilla & Gómez Alfonso, 2019) and highlight the connection between proportional and algebraic reasoning (Blanton et 

al., 2015). 

− Allow PPTs to gain greater familiarity in their problems or solutions with informal and pre-symbolic representations 

(Hohensee, 2017), which are essential in the transition from arithmetic to algebraic thinking. 

The formal algebra knowledge that prospective teachers may possess does not constitute sufficient preparation for teaching 

early algebra (Hohensee, 2017). Their experiences with algebraic practices are derived from considering equation solutions, which 

limits a broader perspective of algebra. The context of activities that can be conducted with representations such as informal 

diagrams and number lines can be a productive way to approach the pre-symbolic study of equations or functions (Hohensee, 

2017). As part of flexible problem-solving and the ability to handle tasks involving different EAR levels that is, various degrees of 

formalization of mathematical activity, it is necessary for prospective teachers to understand the role of proto-algebraic 

representations, use them in their practices, and be able to design tasks that motivate their use. 

Both the design of the training experience and the results obtained from its implementation with PPTs are relevant due to 

their applicability in teacher training programs in other contexts (different educational stages, different mathematical contents). 

The type of action described incorporates the resolution and creation of tasks in a way that is articulated with the analysis of 

mathematical practices, as a means to develop different types of reasoning, recognizing the link between the elements of the 

problem and the mathematical activity that it motivates (Malaspina et al., 2019; Mallart et al., 2018). 
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