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The authors conducted a two-semester quasi-experimental study in which each author 
taught a traditional lecture-based section of precalculus and a section using an inquiry-
based approach called a Modified Moore Method in which the students worked through 
and presented the course material. A common final exam was used to compare student 
achievement. The results were compared for the overall population and by each 
instructor. Gender proved to be an important variable with the females performing 
significantly better in the Modified Moore Method sections than their counterparts in 
the traditional sections while there were no significant differences for the males.    
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INTRODUCTION 

There is an ancient proverb attributed to Confucius that reads: "I hear, I forget. I 
see, I remember. I do, I understand."  The idea behind this saying is the driving force 
in many modern educational practices. Educational literature is filled with theories 
and approaches to teaching and learning based on the idea that a teacher-centered 
method, dominated by lectures and demonstration with rote drill and practice, is an 
ineffective way to promote meaningful learning. Problem-Based Learning, Inquiry-
Based Learning, Process-Oriented Guided Inquiry Learning, Discovery Learning, and 
Experiential Learning are a few of the labels for widely practiced methods of 
instruction that share the common theme that students learn best when they are 
actively involved in the classroom. Proponents of these types of approaches often 
support their work with the constructivist theory of learning which asserts that each 
individual has a unique set of experiences and interactions with the world and must 
therefore construct his or her own knowledge (e.g., Cobb, 1994; Confrey, 1990; von 
Glasersfeld, 2003). 

Student-centered teaching methods are certainly not modern inventions as we 
see from the centuries old proverb that opened this discussion. This saying was 
reportedly a favorite of mathematician Robert Lee Moore (1882-1974) who 
pioneered a teaching method that now bears his name, the Moore Method or 
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Moore’s Method. Moore reportedly found as a student that he learned most 
effectively when he worked out proofs and results himself before seeing his 
teachers’ presentations (Zitarelli, 2004). His experiences as a student encouraged 
Moore as a professor to develop courses in which there were no lectures or 
textbooks used to present material. In Moore’s upper-level, proof-based 
mathematics classes, the students were given a set of definitions, axioms, and 
theorems and assigned the task of working through and presenting proofs to the 
theorems. According to descriptions given by his former students (Whyburn, 1970; 
Jones, 1977), Moore’s classes were individualized and competitive with students 
instructed to speak to no one other than Moore about the problems, including their 
classmates. Moore believed that this was the best way to produce qualified research 
mathematicians, and his record as a doctoral advisor supports this view. Moore 
directed 50 dissertations, mostly at the University of Texas, and many of his 
students went on to have prolific careers as mathematicians. Readers interested in 
more detailed discussions of R. L. Moore, the Moore Method, and Moore’s 
mathematical descendants should consult the works of Zitarelli (2004) and Traylor 
(1972). 

The Moore Method is certainly not without its critics, and a common opinion is 
that a strict Moore Method may be appropriate for upper-level, proof-based 
mathematics courses, but such an approach would never work for lower-level 
courses with larger class sizes and less prepared, less motivated students. Holding to 
the principle that students will learn mathematics best by doing mathematics, 
several authors have presented less strict modifications of the Moore Method, 
collectively referred to as modified Moore methods (MMM). Chalice’s (1995) 
modifications include having multiple students presenting simultaneously at the 
board to increase the speed of coverage, using easier exercises to make the material 
more accessible to weaker students, providing write ups of student work afterwards 
so that the students can pay more attention to discussions, and dividing the material 
into units with exams. Cohen (1982) tackled the problem of larger class sizes by 
having the students work and present solutions in groups, recommending class sizes 
of up to 25 students. W. T. Mahavier (1997) combined student problem solving and 
presentations with lecturing. Mahavier reports having success in a variety of lower-
level classes such as algebra, trigonometry, and precalculus, but he argues that 
lower-level classes typically require more lecture time.  

At the time of the study described in this paper, we could find no published 
empirical results comparing the effectiveness of an MMM to traditional lecture-
based methods in lower-level collegiate mathematics courses. We were intrigued by 
the ongoing debate about whether direct instruction is more effective than inquiry-
base methods, and we were interested to see what would happen if we tried to 
implement our own version of an MMM in our precalculus classes, which typically 
range in size from 30 to 38 students. With funding from the Educational 
Advancement Foundation, we were able to conduct a quasi-experimental study 
(Reichardt, 2009) in which each of the authors taught two sections of precalculus; 
one using a traditional lecture approach and another using an MMM approach.  

THE TEACHER-CENTERED VERSUS STUDENT-CENTERED INSTRUCTION 
DEBATE 

In a 2006 issue of the Educational Psychologist, Kirschner, Sweller, and Clark, 
published an argument that direct instruction and worked examples are superior to 
the various forms of student-centered learning. Kirschner et al.’s primary argument 
is that problem solving with minimal guidance places too high a demand on a 
student’s cognitive load for learning to occur. Kirschner, et al. write that the goal of 
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learning should be to transfer knowledge into the long-term memory, and direct 
instruction is the most efficient way to do this. This article was controversial enough 
to spawn three responses and a counter response by Kirschner, et al. in a 2007 issue 
of the same journal. Hmelo-Silver, Duncan, and Chinn (2007) argued that Kirschner, 
et al. were ignoring the fact that Problem-Based Learning (PBL) and Inquiry 
Learning (IL) are supposed to be accompanied with scaffolding to prevent cognitive 
overload, and they cite empirical evidence that PBL and IL have led to increased 
learning over traditional methods. Most notably, Hmelo-Silver et al. cite a meta-
analysis of the effects of PBL in which Dochy, Segers, Van den Bossche, and Gijbels 
(2003) found no significant effect when comparing traditional and PBL instruction 
on assessments of declarative knowledge, but they found a moderately positive, 
robust effect size favoring the PBL students on the application of knowledge. 
Schmidt, Loyens, Gog, and Paas (2007) agree with Kirschner, et al. that minimal 
guidance is ineffective, but like Hmelo-Silver et al., they argue that PBL is not the 
same as minimally-guided instruction, as guidance is provided by the structure of 
the problems posed and the questioning and feedback of the facilitators. These 
defenses of PBL could easily apply to the Moore Method or its modifications. While 
placing major responsibility on the students, the instructor in a modified Moore 
method class provides a tremendous amount of guidance through the carefully 
crafted sequence of problems and through questioning and leading discussions of 
the students’ work. 

The third criticism published addressing the arguments of Kirschner, et al. 
(2006) is also relevant to a discussion of the Moore Method. Kuhn (2007) writes that 
Kirschner et al. make their argument “without reference to any context of what it is 
that is being taught by whom and to whom” (p. 109). Kuhn argues that national and 
state standards in science education require that students learn inquiry skills and 
those inquiry skills cannot be taught through direct instruction. We take a similar 
stance about mathematics. If one believes that mathematics is a finite, fixed set of 
facts and algorithms and that one individual can pass such information to another by 
demonstration, then requiring students to work out details for themselves might 
seem like a waste of time. We, however, believe that mathematics is an evolving 
human process. It is an attempt by mankind to quantify and explain our interactions 
with the world around us. Mathematics is about critical thinking and problem 
solving. To be socially useful, mathematics needs to have agreed upon definitions, 
conventions, skills, and procedures, but those things are of little use without the 
knowledge of when and how to use them. Real-life problems do not look like the 
routine set of exercises found in many traditional textbooks, which often require 
little more than repetition of the procedures outlined in the preceding pages. 
Furthermore, adhering to a constructivist epistemology, we simply do not believe 
that one-way lectures, in which we profess our knowledge of a topic to students 
without their input and interactions, leads to understanding and retention. 

GENDER DIFFERENCES 

Though we were well aware of the extensive coverage that gender differences in 
mathematics achievement and attitudes and beliefs about mathematics have 
received in the educational literature, we did not begin our study initially expecting 
to find gender differences ourselves. However, as we taught our classes using an 
MMM, it became apparent that more males were exhibiting resistance to the method 
and a lack of participation, whereas more of the females in our classes came 
prepared with assignments and volunteered to present on a regular basis. As 
participation is a key component of success in a student- centered learning 
environment, we decided that we should include gender as a variable in our 
investigation.   
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At the time of our study, we were aware of no literature reporting on gender 
differences in inquiry-based undergraduate mathematics, but after we had 
completed our study, a report was released (Laursen, Hassi, Kogan, Hunter, & 
Weston, 2011) concerning a large scale investigation of inquiry-based learning (IBL) 
conducted by researchers at the University of Colorado Boulder in collaboration 
with three other universities. This study took place over two years and included 
qualitative and quantitative data from over 100 classes. In particular, the 
researchers collected self-reported information on learning gains from students in 
IBL classes using numerical and open-ended surveys and analyzed the data by 
gender. The analysis revealed that women in IBL classes reported higher gains than 
the males in the same classes across all of the self-reported measures, whereas the 
“women in the non-IBL classes reported statistically much lower gains than their 
male classmates in several important domains: understanding concepts, thinking 
and problem-solving, confidence, and positive attitude toward mathematics” (p. vi). 
The IBL report asserts overall that IBL courses can eliminate gender gaps by 
removing the stereotype threat and leveling the playing field. We think this 
hypothesis merits further investigation, and we believe that IBL methods such as an 
MMM can be effective even in a first year course such as precalculus. In the 
remainder of this section, we will summarize literature findings on the existence of 
gender gaps in mathematics and discuss proposed theories to explain why such gaps 
might exist and how these theories shape our expectations for MMM classes. 

Whether there is a gender gap in mathematics achievement has long been a topic 
of interest to researchers. In a recent meta-analysis, Lindberg, Hyde, and Peterson 
(2010) reported that their initial search of three popular online databases returned 
tens of thousands of results related to gender differences in mathematics written in 
English between 1990 and 2007. Based on a set of criteria, including a comparison 
of mathematics performance and the necessary information for computing effect 
sizes, Lindberg, et al. analyzed 242 studies and concluded that males and females 
perform similarly in mathematics.  Specifically, the meta-analysis revealed negligible 
effect sizes for gender differences in mathematical performance at the elementary 
and middle school levels along with small effect sizes favoring the males in high 
school (d = +0.23) and college (d = +0.18). The authors note that few of the studies 
included assessments involving high-level problem solving and for those that did 
include such items, the results favored the male students in high school (d = +0.16) 
and the female students in college (d = -0.11). While the meta-analysis provides 
encouraging evidence that wide spread achievement gaps between males and 
females may have dramatically decreased over the past two decades, the large 
quantity of published research clearly indicates that there are conditions which can 
lead to gender differences in achievement in mathematics.  

Aside from achievement, there is considerable evidence that gender differences 
often appear in student perceptions and attitudes and beliefs about mathematics. In 
the late 1970s, Fennema and Sherman (1977) found a large number of attitudinal 
differences with males having more favorable attitudes toward mathematics than 
females. Others such as Betz and Hackett (1983) have found similar results with 
females having lower self-efficacy in mathematics than males, and many researchers 
report that students, teachers, and parents often stereotype mathematics as a 
subject in which males are more interested and more capable of success (Kiefer & 
Sekaquaptewa, 2007; Li, 1999; Nosek, Banaji, & Greenwald, 2002).  

Several authors have presented theoretical arguments in an attempt to explain 
why gender differences may occur in mathematics. The most notable theories 
attribute differences to internal factors such as physiological (e.g., Benbow, 1988) 
and cognitive differences (e.g., Byrnes & Takahira, 1993), external factors such as 
exposure to learning experiences (e.g., Fennema & Sherman, 1977; Pallas & 
Alexander, 1983) and social stereotypes (Steele, 1997), or some combination of 
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these two types of factors. Byrnes (2005) argues that no explanation relying on a 
single source to explain gender differences is adequate. For example, biological 
explanations alone cannot account for the fact that most studies have revealed that 
gender differences in mathematics achievement do not occur prior to high school 
(Lindberg, et al., 2010).  

The fact that gender differences only tend to show up after years of schooling 
supports the need to consider social and environmental factors. As already noted, a 
number of studies have shown that stereotyping occurs in mathematics (Kiefer & 
Sekaquaptewa, 2007; Li, 1999; Nosek, Banaji, & Greenwald, 2002). Moreover, 
studies have shown that such stereotypes influence students’ perceptions of their 
own abilities in mathematics (Bouchey & Harter, 2005; Frome & Eccles, 1998; 
Keller, 2001) as well as actual mathematics performance (Ben-Zeev, Fein, & Inzlicht, 
2005; Cadinu, Maass, Rosabianca, & Kiesner, 2005; Quinn & Spencer, 2001). While 
there are numerous potential variables to consider when investigating gender 
differences in mathematics, the issue of stereotyping implies that IBL in general and 
the MMM in particular may offer solutions for leveling the playing field. In an MMM 
class, the teacher becomes a facilitator who provides the problems, and the students 
drive the class by working on and presenting solutions to these problems. Perhaps 
this shift from a teaching style in which students are expected to listen and absorb 
information to a more active learning environment can present a novel experience 
for male and female students, creating an environment different from the traditional 
setting in which stereotyping may have favored the males. Laursen, et. al (2011) 
have argued that this different learning environment may level the playing field and 
remove the gender issue altogether, but if stereotyping and years of traditional 
classroom instruction has favored male students, they may in fact be more resistant 
to a different approach, a phenomena that seemed to occur in our classes.   

PURPOSE 

This study explored the use of a modified Moore method in an undergraduate 
Precalculus course at a midsize state university in the southeastern United States. 
Our specific version of a modified Moore method will be explained and referred to as 
“the MMM” throughout the remainder of this paper. By running a quasi-
experimental study with three instructors, we sought to investigate the relationship 
between the method of instruction and the students’ achievement in mathematics as 
well as the role that gender plays in this relationship. In this paper, we address the 
following research questions: 

1. Will the students taught with the MMM perform better on a common final
exam than the students taught in a traditional format?

2. Will the effects of the MMM on achievement differ by gender?

METHODS AND PROCEDURES 

This study involved six sections of college precalculus at a midsized 
(approximately 6000 students) state university in the southeastern United States. 
The student body of the university is approximately 88% Caucasian, 3% African 
American, 3% Hispanic, and 6% other ethnicities with 59% female and 41% male 
students. Each Precalculus section in this study had between 30 and 38 students.  

Course context 

The authors were the researchers and instructors for this study. We each taught 
one traditional precalculus section using a lecture format and a textbook by Stewart, 
Redlin, and Watson (2007) as well as one section using the MMM. In remainder of 
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this paper, the sections that were taught with the MMM will be referred to by that 
label, and the label “Traditional” will be used to refer to the sections that were 
taught in a traditional lecture format. The instructors, i.e. the authors, will also be 
consistently referred to as Instructors 1, 2, and 3. These are randomly chosen 
identifiers, not the order of the authors on this paper, selected for consistent 
presentation of the results without identifying each specific instructor’s results. 
Instructors 1 and 3 taught traditional sections in the Spring 2010 semester, while 
Instructor 2 piloted the MMM method. During the Fall 2010 semester, we switched 
roles with Instructor 2 teaching a traditional section and Instructors 1 and 3 
teaching MMM sections. As students are allowed to register themselves for classes, it 
was not feasible to randomly assign students to sections. The students did not, 
however, know when they registered what type of teaching method would be used. 
Thus the study followed a quasi-experimental design with control and treatment 
groups used in a real-life setting lacking a random assignment of students to 
treatments.   

In the MMM sections, we did not lecture on the material or present worked 
examples. The MMM sections were driven by a set of course notes consisting of 
definitions and problems designed to lead the students through the material. The 
content of the precalculus course in this study is mainly trigonometry and 
logarithmic and exponential functions, including the general features of functions, 
inverses, and graphs.  Indeed, at the end of our course we expect our students will 
be able to: 

 Determine if a function is one-to-one and find inverses of one-to-one
functions;

 Apply the properties of exponents and logarithms to solve logarithmic and
exponential equations;

 Use exponential functions to model growth and decay;
 Apply knowledge of vertical and horizontal asymptotes to curve sketching;
 Apply properties of geometric transformations to analyze the graphs of

functions, including trigonometric functions;
 Apply trigonometric ratios and Pythagorean, double, half-angle, sum,

difference, and co-function identities;
 Apply the Law of Sines and the Law of Cosines to solve for the unknown

sides or angles of a triangle;
 Evaluate inverse trigonometric functions graphically, numerically, and

algebraically.
Mahavier’s (2007) Trigonometry notes were used and adapted for that portion 

of the course, and the material for the other topics was written by Karen Briggs. The 
notes contain the definitions of functions and concepts from the course, typically 
followed by a set of problems requiring the students to apply these definitions. A 
sample of these course notes is in the appendix. The problems were designed with 
the intent that each one could be solved using the basic definitions, results from 
previous problems, and prerequisite content knowledge. Furthermore, sequences of 
problems would lead the students to discover some mathematical property or 
theorem.  For example, the notes contain the definition of the logarithmic functions, 
followed by 8 problems in which the students must use the definition to evaluate a 
logarithm of a given number.  In addition to reinforcing the students understanding 
of the definition, these problems gradually elucidate an important property of 
logarithms. Another sequence of problems leads students to discover the rest of the 
properties of logarithms.   

On the first day of class, the students were told to divide themselves into groups 
and given the first few pages of notes. They were given time to work on these 
problems, and then solutions were presented by volunteers. From that point on, a 
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typical class consisted of the students presenting their proposed solutions to the 
problems that they had been given at the end of previous classes. Throughout the 
semester students were allowed to work in small groups, at their own discretion.  
The students often formed study-groups, small cohorts which worked together to 
complete the problem set or to study for the tests; instructors had no role in 
choosing theses groups. In general the student presentations drove the classes. Each 
student was responsible for making his or her best effort at solving a problem and 
for paying attention, asking questions, and discussing the problems as they were 
presented. To motivate the students to come to class prepared to present and 
discuss the homework, Instructors 1 and 3 counted the student presentations as 
30% of the course grade, and Instructor 2 counted them as one-third of the grade. 
Other grades came from homework problems, exams, and class participation. 

The main reason for using a student-centered, inquiry-based learning method is 
the belief that students will better understand and retain the knowledge that they 
have reasoned out for themselves and made sense of in their own way. For this 
reason, the students in the MMM sections were instructed that they could not seek 
help from any outside resources such as textbooks, internet materials, or help from 
people outside of the class. The students were allowed to work in groups on the 
assignments, and they were encouraged to meet with their instructor during office 
hours as needed. An important role of  the instructor in an MMM section is to be able 
to take a problem that a student has seriously attempted but is unable to solve and 
break the problem into more manageable pieces or ask other questions that might 
lead the student toward a solution. This was occasionally done individually during 
office hours and for the entire class when no one could present a potential solution 
or approach to a problem in class.  

In class, when no student was prepared to present a problem the instructor 
might break the problem into components and assist the students by asking leading 
questions. The instructor may also ask the students to form small groups and work 
on the problems together while the instructor circulated about the room, listening to 
conversations and contributing minimally when necessary. After completing a 
sequence of student presentations covering an important topic, the instructor would 
often summarize the findings for the entire class. Despite the quality of the student 
presentations and explanations, students would occasionally express confusion 
regarding the method of solutions.  At these times, the instructor might create 
another similar problem and have the class participate in an interactive problem-
solving session. This amounts to the instructor acting as scribe, writing on the board 
only what students say aloud and asking leading questions. Such questions usually 
referred to the previously presented solution. This can be done repeatedly until the 
methods of solution seem to be understood by the entire class.  

Final exam 

As a common measure of achievement, we used the list of course objectives from 
the department syllabus to create a final exam. This exam consists of 13 free 
response problems, with most problems having multiple parts, for a total of 42 
separate items. A detailed common scoring rubric was developed with 200 possible 
points on the exam. To ensure grading consistency, the problems were divided with 
a given instructor grading the same set of problems for all six sections. As a single 
scale, these 42 items had a Cronbach’s alpha of 0.898. This alpha value indicates this 
scale is internally consistent and reliable; since content of the exam was selected 
based on our course objectives we believe this exam is a valid assessment of our 
students’ course content knowledge. 
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RESULTS 

Table 1 shows the results of two-tailed, independent samples t-tests comparing 
the final exam scores of the students taught by the MMM and those taught by 
traditional lectures. The MMM students had higher average scores on the final exam 
overall and for two of the three instructors, but the difference was only significant 
for Instructor 2. Thus, ignoring gender, the MMM does not seem to have significantly 
affected the achievement of the majority of the students in our study. However, 
splitting the data by gender reveals some interesting results. The results in Table 2 
show that there were no significant differences in the final exam scores for the 
males, but Table 3 provides evidence that the MMM was beneficial to the female 
students. For each instructor, the MMM females had a higher average score on the 
final exam than the females taught in the traditional lecture sections. The overall 
difference for females was highly significant (p = 0.002), and despite the relatively 
small sample sizes, the difference was significant for Instructor 3 (p = 0.005) and 
marginally significant for Instructor 2 (p = 0.073). 

In addition to running the t-tests to compare exams scores by teaching styles 
within gender, we also ran an ANOVA on the four groups: Traditional Females, 
Traditional Males, MMM Females, and MMM males. The overall result of the 
omnibus test was significant (F = 5.317, p = 0.002), and the post hoc Tukey HSD tests 
revealed significant differences in two cases. As detected by the t-tests, the MMM 
females performed significantly better than the Traditional females (p = 0.011) and 
the effect size as measured by Cohen’s d (1988) is medium (d = 0.609). In addition, 
the MMM females performed significantly better than the MMM males (p = 0.002) 

 Table 1. Results of t-tests comparing final exam scores by treatment 

Total 
Group M SD n t p 

MMM 124.8 34.4 92 -1.416 0.160 

Traditional 117.7 35.3 101 

Instructor 1 
MMM 111.8 29.2 31 0.690 0.499 

Traditional 117.8 39.9 34 

Instructor 2 
MMM 136.5 27.7 32 -2.129 0.037 

Traditional 120.0 35.0 34 

Instructor 3 
MMM 125.8 41.8 29 -1.117 0.269 

Traditional 115.2 31.3 33 

Table 2. Results of t-tests comparing final exam scores by treatment for male students 

Total 
Group M SD n t p 

MMM 110.3 33.9 41 1.188 0.238 

Traditional 119.7 36.0 38 

Instructor 1 
MMM 105.6 27.4 17 1.292 0.211 

Traditional 124.4 48.3 14 

Instructor 2 
MMM 125.9 25.7 9 -0.868 0.396 

Traditional 114.5 34.4 12 

Instructor 3 
MMM 106.3 42.8 15 1.057 0.303 

Traditional 119.3 19.1 12 



 Achievement in an inquiry-based learning precalculus course 

© 2015 IEJME, International Electronic Journal of Mathematics Education, 10(2), 97-110 105 

and the effect size is considered large (d = 0.826).  No other pairwise comparison 
was significantly different. 

DISCUSSION 

As previously noted, gender differences in achievement and attitudes have been 
widely discussed in science, technology, engineering, and mathematics (STEM) 
education. As gender may affect one’s preferred learning style, we felt that it was 
important to examine whether or not there were different results when we 
separated the data into male and female groups. This was indeed the case. After one 
semester of the study, we found that the MMM section had significantly higher 
scores on the common final exam than the two control sections (Briggs, Bailey, & 
Cooper, 2011). Those results, however, did not take into account the instructor 
differences or possible gender differences. In fact, Instructor 2’s MMM class was 
nearly three-fourths female, whereas the two control sections were each 
approximately 60% female (very close to the universities gender distribution).  

When we analyzed the data from two semesters, it was evident that there were 
major differences between the performance of the males and females as reported in 
this paper. When dividing the students by gender and type of instruction, we found 
that there were no significant differences between the final exam results for males 
and females in the traditional sections. However, the females taught with the MMM 
did significantly better than the females in the traditional sections and the males in 
the MMM sections. Thus, the use of the MMM in our precalculus classes seems to 
have created a gender gap in favor of the females.  

The results of this study lead to the question, “Why did the MMM seem to 
improve the achievement of female students, but somewhat hurt the achievement of 
the male students?” Since we were unable to conduct a random experiment it is 
possible that the females in the MMM sections were just better students. We do not 
think that is the case. Though our assignment of teaching methods was not random, 
we did run the quasi-experiment across three instructors, reducing the likelihood 
that the more talented females and less talented males enrolled in the MMM sections 
in each case. We also looked at the students’ scores from the mathematics section of 
the SAT and found no significant differences between the four groups when tested 
with an ANOVA (F = 0.676, p = 0.568). We think a more plausible explanation for the 
gender differences that we observed lies in the theory of stereotyping (Steele, 1997). 
If it is true that the traditional K – 12 mathematics experiences lead to stereotyping 
mathematics as a male domain, then the male students have the most to lose when 
faced with a different teaching approach. Each of us can think of several male 
students in our classes who expressed disdain for the method, rarely volunteered 
for presentations or participated in class discussions, and usually came to class with 

Table 3. Results of t-tests comparing final exam scores by treatment for female students 

Total 
Group M SD n t p 

MMM 136.5 30.5 51 -3.251 0.002 
Traditional 116.5 35.1 63 

Instructor 1 
MMM 119.4 30.5 14 -0.563 0.577 
Traditional 113.2 33.4 20 

Instructor 2 
MMM 140.7 27.9 23 -1.841 0.073 
Traditional 123.0 35.7 22 

Instructor 3 
MMM 146.8 29.5 14 -3.016 0.005 
Traditional 112.9 36.7 21 



T.E. Cooper et. al 

106 © 2015 IEJME, International Electronic Journal of Mathematics Education, 10(2), 97-110 

no work completed on the assignments. While we would not claim that the majority 
of the female students were thrilled with the idea of an inquiry-based mathematics 
class with no lectures, very few females openly complained about the method, and 
more females seemed to come prepared to share their work in class.  

We think that the MMM is consistent with the well established constructivist 
theory of learning and should be a viable method to promote deep conceptual 
learning for males and females. However, students’ attitudes and willingness to 
participate are essential ingredients for success. Our initial findings indicate that 
gender may play a key role in a student’s openness to the MMM method. As 
instructors, part of our job is to motivate students to embrace our teaching styles 
and participate in class activities. If the results of our study are indeed due to 
stereotyping, motivating male students to participate in the MMM in introductory 
level mathematics classes may be tougher than motivating the females. 

LIMITATIONS AND RECOMMENDATIONS FOR FUTURE STUDY 

As with any study, there are several limitations and questions remaining for 
future study. As noted in the discussion, we were unable to randomly assign the 
students to sections, preventing a true experimental design, but we were able to 
strengthen the power of our design to some extent by having control and treatment 
sections for three different instructors. A future study could strengthen the 
nonrandom design further by including a pre-test to assess the students’ prior 
knowledge of the specific course material. We did look at the students’ SAT scores, 
but a course specific pre-test would be more informative. We also believe that 
comparing fall semester to spring semester students is a possible limitation of this 
study. In our fall Precalculus classes, the majority of the students are first semester 
college students, taking their first college classes. Perhaps these students have 
different expectations than students in the spring who have had at least one 
semester of college courses. Students with more college experience may be more 
receptive to the MMM.  A longer study could compare students with similar levels of 
college experience. 

Because we were not expecting gender differences when we initially planned our 
study of the MMM, we did not collect empirical data specifically to investigate 
possible sources of gender differences. This should be addressed in future research 
through both qualitative and quantitative methods. Open- ended surveys and 
student interviews could shed light onto this issue. 

Our study was also limited to using the common final exam as the sole measure of 
student achievement. This exam was written to reflect our common course syllabus 
and content that we feel is typical of college precalculus courses. Future studies 
could look at more types of problems and other forms of assessment. Performance 
in Calculus I would be an excellent measure of success. This was problematic in our 
study due to the fact that a large number of our Precalculus students do not actually 
take a college calculus course. Our Precalculus course serves as the terminal 
mathematics requirement for many majors, and many of our mathematics and 
science majors take Calculus I as their first college mathematics class. Thus, we have 
not been able to collect a large enough sample of Calculus I grades for any 
meaningful analysis at this point. Researchers with a larger population of 
Precalculus students transitioning to Calculus I may wish to investigate the effects of 
the MMM in Precalculus on students’ success in Calculus I. 

Finally, student populations vary from school to school, and we hope that the 
results of this study will encourage teachers and researchers to consider using an 
inquiry-based approach in other classes at other settings. Learning in a MMM class is 
a challenge which requires hard work from the students. Throughout history many 
students have sought a “royal road” to knowledge, and part of our job as educators is 
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to teach them that as with physical fitness, mental fitness and agility can only be 
earned through hard work. More studies and reports of the benefits of inquiry-based 
learning would be valuable evidence that teachers could present to students to 
argue this case. 
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Appendix 
Sample Course Notes 

Definition 1. If $P is invested into an account that earns r% (expressed as a decimal) interest 

compounded continuously, then the amount in the account after t years is given by rtPetA )( . 

Problem 1. Suppose that $3500 is invested into an account that earns 5% annual interest, compounded 
continuously.  

a. Find the value of the account after 4 years.
b. Set up the equation to determine after how many years the account will be worth $5000?

Are you able to solve this problem?

LOGARITHMIC FUNCTIONS 

Definition 2. The inverse of the exponential function xby  is called the  logarithmic function with 

base b and is denoted by xy blog , for x > 0 and 0 < b ≠ 1.  This means that xblog  is “the power of b 

which yields x”. 

Problem 2. Reflect the graph of xby  about the line y = x.  The reflection is the graph of what function?   

Problem 3. Use your graph above to determine the following properties of the logarithmic function 

xy blog .  (Recall that the inverse is obtained by reflecting the given graph across the line y = x.  

Symbolically, this is equivalent to swapping the x’s and the y’s.) 
a. Domain:  _______________________________
b. Range:     _______________________________
c. x-intercept: _____________________________
d. Increasing or decreasing?

i. if b > 1:  ________________________,
ii. if 0 < b < 1:  _____________________.

e. Asymptote:  _____________________________  (The exponential function had a horizontal
asymptote, so the logarithmic function should have a vertical asymptote.)

Definition 3. 

 When b = e, we write xy ln rather than xy elog .  We call xy ln the natural logarithmic 

function.

 When b=10, we write xy log rather than xy 10log .  We call xy 10log  the common 

logarithmic function.

Problem 4. Use the definition of the logarithm to evaluate the following.  Remember that xblog means 

“the power of b that yields x”. 

a. 125log5
b.  

9

1
log3

c. 32log2 d. 0001.0log

e. 2log32
f.  

3

7 7log

g. 3lne h. 1log5

Problem 5. Generalize what you just discovered in parts (f) – (h): 

a. 1logb
 = _____________ 

b. 
x

b blog = _______________________  (The logarithmic function undoes the 

exponential function.) 
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LAWS OF LOGARITHMS 

Definition 4. The logarithmic equation xy blog  can be written in exponential form xby  .

Both equations are equivalent. 

Problem 6. Let M and N be positive real numbers and set Mx blog  and Ny blog .  

a. Write both of these logarithmic equations in exponential form and consider the product MN.  Your 

simplified answer should be an exponential equation.

b. Write the equation you just found in logarithmic form and replace x with Mblog and 

y with Nblog . 

Definition 5. The equation you just found is called the Multiplication Rule for Logarithms. 

Problem 7. Apply the same procedure as in Problem 38, but consider the quotient M/N.   

Definition 6. The equation you just found is called the Quotient Rule for Logarithms. 

Problem 8. Apply the same procedure as in Problem 38, but consider M c   where c is a constant. 

Definition 7. The equation you just found is called the Power Rule for Logarithms. 




