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This paper examines examples of teaching approaches involving the use of dynamic mathematics 

software. These were nominated as successful approaches by four organizations participating in the 

InnoMathEd professional development program. The most common type of task reasoning structure 

was one which required students to quantitatively formulate a mathematical relationship expressed by 

a visual representation. The examples nominated by most of the organizations reflected a more 

didactic, guided-discovery orientation grounded in directed action, but those from one organization 

reflected a more adidactic, problem-solving orientation grounded in constrained solution. Instrumental 

demands on students varied substantially between examples, calling for very different levels of 

preparation and guidance. The core idea behind these dynamic approaches was one of manipulating 

displayed representations so as to highlight associated variation (or non-variation) of properties, and 

relations between different states or representations. Employing this type of user interaction to support 

visualization and observation was seen as creating a learning environment that encourages exploration 

and experimentation through which mathematical properties and relationships can be discovered. 
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Sustained professional interest in the potential contribution of digital technologies to 

mathematics education has not yet been translated into widespread use of such technologies 

in everyday mathematics teaching. A key intermediary factor is the professional development 

available to teachers. Gaining insight into the examples of technology use that teachers are 

exposed to, and the ways in which these are conceptualized didactically, provides a base for 

reflection on the effectiveness of current professional development provision in this crucial 

process of intermediation. In this paper, we examine this issue by drawing on the work of a 

professional development program in which well-established providers of initial and 

continuing teacher education collaborated in promoting the use of didactical approaches 

based on the use of dynamic software in school mathematics. 

The Innovations in Mathematics Education Project 

Innovations in Mathematics Education [InnoMathEd] was a professional development 

project involving organizations in several European countries (Bianco & Ulm, 2010). The 

InnoMathEd proposal argued that learning environments based on the use of dynamic 

mathematics can serve as catalysts for pupils‟ active, independent and exploratory learning in 

school mathematics. More specifically, the project intended to focus on the use of a particular 

type of learning environment to support such learning: the “dynamic worksheet” in which 

manipulable constructions and accompanying text serve to pose problems or provide 

explanations.  
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The InnoMathEd proposal highlighted a number of significant features of the 

mathematical constructions that dynamic resources make possible.  

They allow visualizations that are not possible by means of traditional media for 

teaching. In contrast to constructions on paper or on the blackboard, constructions 

with dynamic mathematics can be changed and varied on the screen dynamically. 

Furthermore integrated computer algebra systems bridge gaps between geometry, 

algebra and calculus. They allow to measure lengths, angles or the coordinates of 

points and to use these measurements for further calculations. They offer working 

with functions and integrating graphs of functions in dynamic constructions. 

(InnoMathEd, 2008) 

Each of the major partner organizations in the project was involved in providing some form 

of initial and/or in-service teacher education on the design and use of dynamic resources in 

school mathematics. Our own more modest role was, at an early stage, to identify ideas from 

published research on dynamic mathematics that highlighted significant implementation 

issues (to be presented in the next section); and then, at a later stage, to examine what forms 

of use of dynamic mathematics the major partners had found to be particularly successful (to 

be presented and analyzed in later sections).  

Significant Issues in Implementing the Use of Dynamic Mathematics 

Previous research studies have identified a number of significant issues in developing the 

use of dynamic resources in school mathematics.  

In a French project aimed at developing the classroom use of dynamic geometry, teachers 

devised lesson „scenarios‟, and refined them through discussion with a wider team of 

educators and developers associated with the software (Laborde, 2001). In the more 

conventional scenarios developed by teachers, dynamic geometry provided a convenient 

parallel to paper and pencil: to produce accurate static figures and generate measurement 

data; to highlight invariant properties through their visual salience under dragging. Scenarios 

of these types were often marked by “a restricted and static use of the possibilities of the 

software,” and “the absence of autonomous experimentation by students” (Laborde, 2001, 

p.299). This accords with critical review of the dynamic geometry activities proposed in the 

professional literature which suggests that many of these reduce to a verifying approach in 

which students are simply expected to vary geometric configurations in order to produce 

empirical confirmation of already formulated results (Hölzl, 2001). However, the French 

project did give rise to some more ambitious scenarios, making fuller use of dynamic 

software to support more interactive tasks, and often depending on mathematically innovative 

thinking: to pursue qualitatively new types of solution to familiar problems, as with certain 

aspects of construction; and to pose novel types of problem dependent on the software, such 

as identifying the properties of a dynamic diagram through dragging it. Even in this very well 

supported development project, then, the ways in which dynamic geometry was used within 

classroom practice varied considerably with respect to their degree of mathematical 

innovation, interactive organization and exploratory orientation. 
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A British study of the existing use of dynamic geometry in well-regarded school 

mathematics departments found that a shared rhetoric of employing dynamic geometry to 

support guided discovery accompanied very different forms of pedagogical thinking and 

classroom practice (Ruthven, Hennessy & Deaney, 2008). First, teachers took very different 

views on whether or not students should themselves work with dynamic software: at one 

extreme, the teacher alone managed use of the software, presenting students with carefully 

prepared figures; at the other, students themselves were expected to construct and manipulate 

relatively complex figures. The framework within which teachers evaluated the costs and 

benefits of student use was strongly influenced by the extent to which they saw such activity 

as providing students with direct experience of a mathematical reference model for the topic 

under instruction, and more fundamentally as promoting mathematically disciplined 

interaction. Likewise, teachers took very different approaches to handling apparent 

mathematical anomalies of software operation: at one extreme, seeking to ensure that these 

remained hidden from students; at the other, viewing student exposure to such situations as 

supporting critical thinking and strengthening mathematical understanding. Teachers‟ choice 

of approach depended on whether they saw such anomalies as providing opportunities to 

develop students‟ mathematical understanding, in line with a more fundamental pedagogical 

orientation towards supporting learning through analysis of mathematical discrepancies. In 

effect, variability in students‟ exposure to the operation of dynamic geometry was driven by 

the degree to which teachers saw developing their instrumental knowledge of the software as 

promoting mathematical learning.  

The main thrust of these earlier studies was highlighted at the first InnoMathEd 

workshop, and the full papers were made available as InnoMathEd resources. They have also 

provided sensitizing concepts for this analysis of examples of dynamic mathematical 

approaches developed within the program. 

Eliciting Examples of Dynamic Mathematical Approaches 

Each of the major partners in the InnoMathEd program was asked to nominate one or two 

examples of lessons/activities that participating teachers had found particularly successful, 

and to provide the following information about each example. 

1) A specification for the lesson/activity written in a way that offers guidance for 

teachers attempting it for the first time. 

2) A copy of the dynamic materials to be used in the course of the lesson and of any 

other supporting materials needed. 

3) A covering statement, based on discussion with participating teachers, covering the 

following matters, and any others considered relevant: 

a. What is it that makes this approach a “dynamic” one? 

b. What features of this approach lead to it being particularly successful, and how do 

they contribute to this success? 

c. What preparation/actions/guidance by the teacher are important to the success of 

this approach? 

d. What potential obstacles are there to this approach being successful and how these 

can be avoided/overcome? 
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We received responses from four of the participating organizations, providing eight 

examples of dynamic mathematical approaches judged to be successful (as summarized in 

Table 1). Each example has been given a reference label and is illustrated in one of Boxes 1 

to 8. One important point to note is that all but the last example appear to be at a 

mathematical level intended to be suitable for use with school students (as well as of value in 

the professional development of teachers), whereas the last example [D2] appears to be at a 

higher mathematical level (but intended to provide teachers with a model of the type of 

pedagogical process that could be used with school students).  Further accounts of the work 

undertaken by these organizations are available in the InnoMathEd end-of-project publication 

(Bianco & Ulm, 2010): specifically from the Augsburg team (Bianco, 2011; Ulm, 2010); 

from the Bulgarian team (Chehlarova & Sendova, 2010; Sendova & Chehlarova, 2010); from 

the Cyprus team (Mousoulidees et al., 2010; Sophocleous et al., 2010); and from the South 

Bohemian team (Binterova & Fuchs, 2010; Pech, 2010).  

Table 1 

Examples of dynamic mathematical approaches nominated as successful 

Participating 

organization 

Title/Mathematical 

topic 

Supporting 

software 

Reference 

label 

Box with 

illustration 

University of 

Augsburg 

Circumference GeoNext-based 

applet 

A 1 

Bulgarian Academy 

of Sciences 

Explorations with 

configurations of 

colored unit cubes 

Cubix Editor, 

Cubix Shadows, 

Cubix 

B1 2 

Nets Origami Nets, 

Stuffed Toys, and 

Scissors 

B2 3 

There are enough 

rotational solids to go 

around 

Math Wheel, 

Potter‟s Wheel, 

and Bottle Design 

B3 4 

University of 

Cyprus 

Area of a circle EucliDraw Jr C1 5 

Properties of 

quadrilaterals 

EucliDraw Jr C2 6 

University of South 

Bohemia 

Creating a concept of 

quadratic function  

Cabri, GeoGebra D1 7 

Heights of the triangle Cabri, GeoGebra, 

CoCoA 

D2 8 

Each submission is illustrated by a box in the Appendix. The wording of these has been taken 

directly from the original examples, but, since some of the worksheets involved a lengthy 

series of tasks, they have been shortened to fit this paper. For instance, because D1 involved a 

total of 31 tasks, we only included the initial ones and then the final one with a view to 

enabling readers to grasp the intentions of the developers. Full details of these task sequences 

can be accessed on the InnoMathEd project website. 
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Analyzing the Nominated Examples of Dynamic Mathematical Approaches 

After reviewing the submitted texts and examples, we identified three guiding questions 

for our analysis. First, what mathematical knowledge did the example seek to develop in 

students? Second, what was the basic reasoning structure of the task, paying particular 

attention to the mode(s) of reasoning implied and the associated degrees of freedom? Third, 

what were the key instrumented techniques required of students in undertaking the task, in 

the sense of the mathematico-technical competences of tool use? In identifying these features, 

we sought to be guided as far as possible by the original presentation of the example, but we 

recognize that because our framework for analysis goes beyond the terms in which these 

presentations were couched, our conclusions inevitably involve a degree of further 

interpretation and inference. In addition to the three framework questions, we also analyzed 

project participants‟ descriptions of the didactical thinking behind the implemented dynamic 

features, as given in response to part 3 of our request (with subheadings a to d). The mode of 

analysis we used was organized around focused coding and recoding of the submitted 

materials through a recursive process of constant comparison (Strauss & Corbin, 1990; 

1998). 

Mathematical knowledge and reasoning structures. We examined the mathematical 

knowledge targeted by these examples further with a view to locating it within a broader 

typology (as shown in Table 2). All but one of the examples appear to involve some element 

of spatial visualization [Type-SV, as shown within A, B1, B2, B3, C1, D1, D2]. All but one 

incorporate some element of verbal-symbolic formulation of quantitative relations [Type-QF 

as shown within A, B1, B3, C1, C2, D1, D2]. Notably too, the great majority adopt a 

sequencing in which SV is followed by QF [A, B1, B3, C1, D1, D2]. Thus, the most common 

type of mathematical goal within the examples is to quantitatively formulate the 

mathematical relationship expressed by a visual representation. For instance, in example A, 

students take measurements from circles of different sizes and make conjectures about the 

relationship between radius and circumference. Less commonly, examples call for 

coordination of representations [Type-CR, as shown within B2, D1]: in example B2, for 

instance, polyhedral shapes are represented both as 2D nets and as 3D solids. 

We also examined the basic reasoning structure of the tasks (as shown in Table 2) with an 

eye to whether this involved directed action (in the sense of the student being told what 

mathematical procedures to carry out or mathematical features to observe) [exemplified by A, 

C1, C2 (first part), D1, D2) or constrained solution (in the sense of the student being required 

to find processes or formulate features subject to given constraints) [exemplified by B1, B2, 

B3, C2 (second part)]. It is clear that the examples nominated by three of the participating 

organizations [A, C, D] primarily reflect a guided-discovery orientation grounded in directed 

action, whereas those from the fourth [B] primarily reflect a problem-solving orientation 

grounded in constrained solution.  
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Table 2  

Mathematical knowledge and reasoning structure 

Example Mathematical knowledge Basic reasoning structure of 

task(s)  

A Visualization of the linear character of the 

circumference of a circle [SV] 

Formulation of the relation between the 

lengths of diameter and circumference of a 

circle [QF] 

Directed data pattern generation 

and formulation 

B1 Visualization of the volume of a rectangular 

cuboid and associated decompositions and re-

compositions [SV] 

Formulation of associated spatial patterns and 

quantitative relations [QF] 

Constrained figure construction 

B2 Coordinated visualization of polyhedral shapes 

and their nets [SV, CR] 

Constrained problem solving 

B3 Visualization of solids of rotation and 

associated decompositions and re-

compositions [SV] 

Formulation of associated quantitative 

relations for surface area and volume [QF] 

Constrained problem solving 

C1 Visualization of decomposition of circle into 

sectors and re-composition into near-

parallelogram [SV] 

Formulation of relation between area of circle 

and lengths of its radius and circumference 

[QF] 

Directed figure construction 

Directed data pattern generation 

and formulation 

C2 Formulation of metric properties of standard 

quadrilateral types [QF] 

Identification of quadrilateral type satisfying 

multiple metric properties 

 

Directed figure construction 

Directed property recognition 

Constrained figure formulation 

and trial construction  

Constrained property 

formulation and trial 

measurement 

D1 Visualization of quadratic functions from a 

geometric construction (estimate the locus of a 

point) [SV] 

Obtaining the equation of the locus curve by a 

built-in functionality of the software and 

connecting it with algebraic representations 

[QF] 

Changing parameters in the equation and 

investigating their role in the graphing of the 

curve [CR] 

Directed figure construction 

Directed visual pattern 

recognition 

Directed automated property 

formulation 

Directed property recognition 

 

D2 Visualization of triangle and its altitudes, 

construction of triangle and its altitudes [SV] 

Verification with DGS of concurrency of 

altitudes 

Using CAS to generate proof  [QF] 

Directed figure construction 

Directed property verification 

and validation 
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Software types and instrumented techniques. We assessed the instrumental demands of 

each example (as shown in Table 3) by identifying (as far as available information permitted) 

the key instrumented techniques required by students. We found that Example A differs from 

the others in two significant respects. First, it minimizes the instrumented technique required 

of students through presenting them with a prepared dynamic figure; nevertheless, students 

still need to make mathematical sense of what is taking place when they drag a point, calling 

for them to mentally reconstruct the figure. Second, this example incorporates parallel tasks, 

one using idealized figures in the dynamic environment [Exercise 1], the other using real 

objects and hand measuring tools [Exercise 2]; however, what remains implicit is the process 

by which the mathematical parallels between these two situations are constructed. All the 

other examples call for more extensive instrumented technique on the part of students: 

generally, this is specifically prompted within the worksheets. Equally, the other examples do 

not use other tool systems in parallel (notably pencil-and-paper or manipulatives). The 

dominant model for task design, then, is one in which established tools are replaced, rather 

than complemented, by dynamic software. 

In all of the nominated examples, use of the software is intended to support visualization 

of mathematical objects. Sometimes the software is designed for a very specific topic within 

mathematics [B1, B2, B3] while at other times it is a more generic mathematical tool [A, C1, 

C2, D1, D2]. For instance, the Cubix Editor in B1 is designed specifically to visualize 

constructions with unit cubes, and to allow coloring of these objects. In contrast, examples C 

and D use more generic and flexible software such as EuclidDraw, Cabri, and GeoGebra 

capable of more wide-ranging and versatile constructions.  

The instrumented techniques required in the examples appear to make three levels of 

demand, governed by the closeness of the relationship between the task(s) posed and the 

supporting software artifacts. The link is tightest and instrumental demands least where a 

(Type-SA) specific applet is customized to a particular task [A], intermediate where a (Type-

TE) tailored environment is designed to support work around a particular topical theme [B1, 

B2, B3], and the link loosest and instrumental demands greatest where (Type-GS) generic 

software is used (reflected in the greater degree of instrumental guidance and direction 

provided) [C1, C2, D1, D2]. At one extreme, in example A, students are required to 

experiment by changing the size of the circle radius and measuring the resulting 

circumference. This task does not require students to have knowledge of the underlying 

software, but only to follow simple instructions specific to the pre-designed template for the 

task. At the other extreme, in examples D1 and D2, carrying through the tasks requires 

substantial knowledge of software tools. Thus the instrumental requirements differed 

significantly between the tasks, calling for very different levels of preparation of students to 

work on these problems, and correspondingly of teacher guidance.  
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Table 3  

Software types and instrumented techniques 

Example Software 

type 

Key instrumented technique(s) 

A SA Dragging points on prepared figure 

[Other techniques using pencil-and-paper tools] 

B1 TE Range of construction, coloring, reorientation and comparison 

techniques 

B2 TE Range of construction, manipulation and scaling techniques 

B3 TE Range of construction, rotation and measurement techniques 

C1 GS Use of circle construction command 

Use of sector division command 

Use of manipulative techniques to reconfigure sectors 

Use of measurement commands for specific lengths and areas 

C2 GS Use of shape-specific construction commands, and of regular-

polygon command to construct square 

Use of measurement commands for lengths and angles 

Use of labeling and naming techniques 

Use of enlarging and reducing techniques 

D1 GS Use of line and segment tools 

Use of parallel line tool 

Use of labeling and naming techniques 

Use of locus/trace tool 

Use of “set” tool for finding equation of locus line 

Use of algebraic functions and changing parameters of equations 

Use of axes and function plotting 

D2 GS Use of line, triangle tools 

Use of perpendicular line tool 

Use of “member” tool to identify points on objects 

Use of complex CAS programming 

Analyzing the Didactical Thinking behind Dynamic Mathematical Approaches 

The covering statements accompanying each of the nominated examples of successful 

dynamic mathematical approaches provided a basis for analyzing the didactical thinking 

behind such approaches. 

Dynamic concepts and success features. In response to the question of what makes an 

approach a dynamic one, many of the responses alluded rather indirectly to the dynamic 

aspect, focusing on the mathematical processes involved and/or the mathematical outcomes 

anticipated. Related ideas often appeared in response to the question on what features of the 

approach lead to it being particularly successful, and how they contribute to this success. 

Because participants‟ replies to these two questions were similar in many respects, we have 

treated them together. Table 4 shows those ideas identified in responses from at least two of 

the contributing organizations.  

Focusing directly on the dynamic aspect and its more immediate affordances, the core 

idea appears to be one of manipulating displayed representation(s) to highlight associated 

variation and non-variation of properties, and relations between different 



97  K. Ruthven & Z. Lavicza 

 

states/representations. Employing this type of user interaction to support visualization and 

observation is seen as creating an environment that encourages exploration and 

experimentation through which mathematical properties and relationships can be discovered. 

More broadly, use of computers is seen as improving efficiency and precision of 

construction, measurement and computation, and as enhancing participation by students and 

interaction between them. Indeed, respondents considered that it was the use of computers 

that made many of the nominated examples possible – or feasible – in ordinary teaching 

circumstances.  

Table 4  

Dynamic concepts and success features 

Coded idea Examples 

Variation and 

non-variation 

[D]ynamic constructions can be varied on the screen. [A] 

In the activity for the properties of quadrilaterals the participants can 

actually see the properties of a shape since these do not change when one 

drags the shapes. [C2] 

Image is not static, students can create something themselves, and there is 

a change in it. [D1] 

Visualization 

and observation 

The dynamic construction helps to see the circumference as a one-

dimensional line with a length that can be compared with the diameter. 

[A] 

The virtual environment Origami Nets ensures dynamic visualization. 

The 2D-3D movement can be observed and vice versa. It is possible to 

transform one constructed figure into another. [B2] 

In activity with the area of a circle, students can actually see where the 

formula for the area of a circle arises from. When students cut the circle 

in a number of sectors and place them in a certain way, they can see that 

the figure starts resembling to a quadrilateral. This becomes more 

obvious as the number of sectors in which a circle is cut into becomes 

larger. [C1] 

We want students, when we offer them problems, to use the possibility of 

visualization […] Working individually, they can discover some of the 

characteristics of quadratic functions at the same time. During the 

computer experiment with the quadratic function, they can – besides 

other things – observe the role of parameters and the sense of the constant 

term in the standard form of the quadratic function notation. [D1] 

Exploration and 

discovery 

With the dynamic worksheet, students can explore and discover the 

relationship between the circumference and the diameter of circles. [A] 

This task is interactive since students are active learners; they construct 

and measure the dimensions of a parallelogram and extract their 

conclusions. This interaction with the shape and measurements allows 

students to draw their own conclusions. [C1] 

We are confident, that by experimentation, observation of the situations, 

which they know from real life, by searching hidden regularity, by the 

gradual creation of correct terminology, by the pacific leading to correct 

locution and called the things, lead the students to get an opinion that 

Math is a powerful tool which helps us with knowledge of the real world. 

[D1] 
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Table 4 (cont.) 

Coded idea Examples 

Efficiency and 

precision  

The measured values are more precise than measurements of objects from 

real life. [A] 

Constructions done in sufficiently short time. [B1] 

It also allows them to simultaneously read the measurements and see the 

shape. [C1] 

The software also allows students to do this procedure much faster and 

more accurately. [C2] 

Precise constructions/measurement. [D2] 

Feasibility With the dynamic construction one can get measured values in regular 

steps. […] With real life objects one can hardly get such equidistant steps 

of the diameter. [A] 

The instruction uses material, virtual and ideal (imaginary) solids. [B2] 

Creates tasks that cannot be posed without the software. They were asked 

in the quadrilateral activity to construct a shape that carried certain 

properties. The dragging facility of the software allows the participants to 

check whether certain shapes possess specific properties. [C2] 

Participation 

and interaction 

It is possible to make competitions - to model a certain solid in terms of 

shape and/or volume (surface area); to do project work. [B3] 

Gives experimental environment where all students (including weak 

students) participate. All students were able to construct, measure and 

explore various quadrilaterals and their properties. Teachers commented 

that weak students were also able to experiment, discuss and participate in 

this activity more than they usually do with paper and pencil tasks. 

[C1/C2] 

Teacher Actions and Potential Obstacles to Success 

Responses were less developed and more varied in focus on the final questions regarding 

what preparation or actions or guidance by the teacher are important to the success of the 

approach, and what potential obstacles there are to the approach being successful and how 

these could be avoided or overcome. In Table 5, we offer an overview of the ideas expressed 

in the responses. In contrast with the detailed treatment of mathematical and instrumental 

issues in the specifications for the examples, responses to these questions were framed in 

much more general terms rarely linked to the specificities of the task. There was little 

evidence of knowledge gleaned directly from classroom use of the nominated examples by 

participating teachers, or of task-specific formulation of the types of implementation issues 

that teachers might encounter.  

With the exception of organization B, respondents considered that using dynamic 

approaches required considerable preparation on the part of teachers to find or create suitable 

teaching ideas, and to develop suitable lesson plans and supporting resources. The 

preparation and use of dynamic resources called not only for mathematical and pedagogical 

expertise on the part of the teacher, but for the technical knowledge that enabled 

mathematical and pedagogical ideas to be operationalized through use of dynamic 

mathematical tools. Equally, decisions had to be made about how to orchestrate classroom 

activity appropriately and to prepare students to meet the technical demands of software use. 
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We note that these latter issues seemed to be largely left to the teacher to address, as the 

supporting materials for the nominated examples focused primarily on mathematical tasks 

and instrumented techniques. 

Table 5  

Teacher actions and potential obstacles to success 

Coded idea Examples 

Preparation of 

lessons and 

resources 

Producing or finding material; formulating exercises; designing learning 

environments [A] 

Preparation of worksheets. [B1/B2] 

Teachers need to know how to construct an activity with the use of 

technology and what type of questions to ask. [C1/C2] 

Teachers must be prepared to construct different types of lesson plans 

and activities to the ones that they used to prepare when students were 

using only paper and pencil. [C1/C2] 

Good examples. [D2] 

Functioning of 

technical 

facilities 

Coping with technical obstacles [A] 

The teacher must have installed the programmes on the PCs. [B1/B2/B3] 

The main obstacles that the teachers may face are technical problems 

that could arise from the use of software or computers. [C1/C2] 

Technical skills 

of students 

Giving technical support to students. [A] 

Students cannot handle the software properly [D2] 

Orchestration of 

classroom 

activity 

Arranging students‟ individual and cooperative work. Arranging 

students‟ presentations and discussions. [A] 

The difficult thing during the first two classes is to organize such 

individual and group work as to ensure optimal opportunities for most 

students. [B3] 

In these activities teacher needs to act as a facilitator, while students 

must be in control of the exploration. [C1/C2] 

Teacher 

mathematical 

knowledge 

It is important for teachers to know the mathematical context. [C1/C2] 

Good understanding of mathematics (geometric) substance of the 

problem. [D1] 

Teacher 

technical 

knowledge (for 

mathematical 

and pedagogical 

purposes) 

In meetings at the University or at schools teachers acquire technical 

skills for using DGS and for creating dynamic worksheets. [A] 

Teacher to know why to use this software to teach the specific 

mathematical concept and how to use the software. [C1/C2] 

Be familiar and proficient in mathematics programs in the context of 

their mathematical knowledge [D1] 

Teacher 

pedagogical 

knowledge 

[Teachers] get acquainted with general ideas and theories of teaching 

and learning as well as with techniques for constructing learning 

environments for individual and cooperative learning. [A] 

The main emphasis should be placed on the adequacy and effectiveness 

of educational practices, rather than the gratuitous use of technology. 

[D1] 

Conclusion 

This analysis of the examples of the use of dynamic mathematics that were nominated as 

successful by teacher educators helps to define a „conceptual space‟ of crucial issues that 
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deserve discussion amongst teacher educators in relation to the design of programs of 

professional development, and often also between teacher educators and teachers in the 

course of such professional development.  

An issue of specific relevance to teacher educators is the desirable balance and 

appropriate management of examples at differing mathematical levels. We have seen that the 

majority of the examples chosen appear to be at a mathematical level intended for use with 

school students. However, effective professional development needs to consider how 

teachers‟ responses to such tasks may differ from those of their students. Unlike students, 

teachers are generally already familiar with the (type of) result they are intended to „discover‟ 

or the (type of) problem they are asked to „solve‟; this already established framework shapes 

their interpretation of the situation. Thus, in line with Laborde‟s (2001) findings, it may be 

particularly important for teachers to have some form of direct experience of how students 

tackle such tasks in the ordinary classroom, and to be given opportunities to reflect on such 

experience and build models of crucial didactical processes and variables. A much more rare 

approach was to engage teachers in mathematical tasks at a higher mathematical level (closer 

to the limits of their own mathematical knowledge). Here, it seems particularly important that 

teacher educators consider how to bridge between such experience and teachers‟ awareness 

of pedagogical processes and development of didactical models that can be used productively 

with school students. 

A second issue, important for teacher educators to help teachers consider, is the variety 

and balance of task types. We have seen that by far the most common type of mathematical 

goal within the nominated examples is one of quantitatively formulating the mathematical 

relationship expressed by a visual representation; Monaghan (2004) described similar sets of 

goals. A less common goal involved the coordination of mathematical representations. 

Indeed, we have seen that the predominant reasoning structure within the nominated 

examples reflected a guided-discovery orientation grounded in directed action (to create what 

can be termed a didactic situation), in contrast to a problem-solving orientation grounded in 

constrained solution (to create an adidactic situation). While respondents argued that these 

tasks became more feasible, occasionally indeed possible, through use of technology, 

virtually all belong to the earlier levels of Laborde‟s (2001) typology, in the sense that the 

mathematical question posed does not depend on dynamic mediation. This, then, appears to 

be an area that would benefit from the development of wider-ranging examples and example-

types. 

A third issue is the handling of instrumental demands. We have seen how most of the 

nominated examples called for quite extensive instrumented technique on the part of students, 

often supported by just-in-time prompts on worksheets. The levels of instrumental demand 

were somewhat less where a tailored environment was available to support work around a 

particular topical theme, and somewhat greater where students used generic software from 

scratch. Even where students were provided with a prepared dynamic figure to manipulate, a 

degree of instrumented technique was still required for students to make mathematical sense 

of the figure under manipulation. Equally, only one example incorporated parallel tasks using 

tool systems based on pencil-and-paper and manipulatives: the dominant model for task 

design was one in which established tools are replaced, rather than complemented, by 

dynamic software. This suggests that it would be beneficial for issues of instrumental genesis 
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and orchestration (Trouche & Drijvers, 2008), in particular those of double instrumentation 

(Ruthven, 2009), to receive explicit attention within professional development. 

A final issue is that the didactical thinking behind these examples appeared to be 

primarily a priori, with a focus on mathematical analysis and associated didactical reasoning. 

There was little evidence of direct account being taken a posteriori of feedback from 

participating teachers on classroom use of the nominated examples. While the respondents 

did identify, in general terms, a range of necessary actions for, and potential obstacles to, 

successful classroom use, there was less evidence of these being followed through in detail in 

the design and documentation of the nominated examples. This links back to the first issue. If 

the experience that teachers have during professional development is overly idealized, and 

insufficiently related to crucial matters that arise in classroom implementation, this represents 

a fundamental flaw in the process of intermediation that professional development aims to 

accomplish. 
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Appendix 

Box 1: Illustrative Task Sequence for Example A 
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Box 2: Illustrative Task Sequence for Example B1 

 

Explorations with configurations of colored unit cubes 

The Challenge: 

Construct a 6 x 6 x 6 cube by using 36 

red, 36 blue, 36 green, 36 black, 36 white 

and 36 yellow unit cubes so that each 

column of the cube of size 1x1x6 

contains one unit cube of each color.    

Task 2. Construct a 2x2х2 cube using 4 

blue and 4 yellow unit cubes so that each 

1x1х2 cuboid contains 1 blue and 1 

yellow unit cube. 

Task 3. Construct a 3x3x3 cube by using 

9 red, 9 blue and 9 yellow unit cubes so 

that each column of size 1x1x3 contains 

one unit cube of each color. 

Hint 1. This problem is similar to the 

problem of filling the unit squares in a 

3x3 square with numbers from 1 to 3 so 

that each number appears just once in any 

row or any column. Use the analogy! 

Hint 2. Figure out how many cuboids of 

size 1x1x3 are there in a cube of size 

3x3x3. 

Hint 3. Add a layer to the construction 

below so as to get a cube 3x3x3 that 

satisfies the requirements. 

Task 4. Construct a 4x4x4 cube by using 

16 red, 16 blue 16 green and 16 yellow 

unit cubes so that each column of size 

1x1x4 contains one unit cube of each 

color. 

… 

Task 31. Change the configurations 

given below so that each layer (in any 

direction) contains a cube of each 

participating color by exchanging two 

unit cubes. 
  

 

 

 
Figure 1 
 

 

 

 
Figure 2 

 

 

 

 

 



105  K. Ruthven & Z. Lavicza 

 

Box 3: Illustrative Task Sequence for Example B2 

 

Explorations with the Origami software 

The Challenge: 

Construct models of the figures with the 

Origami program.  

 

Task 1 

To construct a figure of squares: select a 

square from the figure menu with the 

mouse pointer, select a side of the square 

to which to put the next square, continue 

until you get the desired figure.  

 

 

 

 

 

 

Task 2 

To fold up the figure: select the 3D 

button point the square you want to bend, 

enter the folding angle in degrees (for 

example, 90)  

To view the folding effect, use the slider 

between the 2D and 3D buttons. 
 

 

 

 
Figure 1 
 

 

 
Figure 2 
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Box 4: Illustrative Task Sequence for Example B3 

 

Explorations with the Math Wheels software 
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Box 5: Illustrative Task Sequence for Example C1 

 

Explorations with the EucliDraw software 

The Challenge: 

In this activity, students will use the 

dynamic software Euclidraw Jr to 

discover the formula for the area of 

the circle. The method that we used 

to discover the formula of the circle 

is similar to the methods used by 

Evdoxos and Archimedes. 

 

 

Task 1 

Construct a circle on the screen. 

Then, using the Divide in Sectors 

tool, divide the circle into six 

sectors. Put the sectors, in such a 

way as to construct a parallelogram. 

 

 

 

 

Task 2 

Repeat the first task, by dividing the 

circle into eight, ten, twelve, and 

twenty sectors. Every time measure 

its circumference and the length of 

its radius. Complete the table below. 
 

 

 
Figure 1 
 

 

 

 

 
Figure 2 
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Box 6: Illustrative Task Sequence for Example C2 

 
 

Properties of quadrilaterals 

 

In this activity we used the dynamic software of EucliDraw Jr to investigate different 

quadrilaterals and their properties.       

Section Α 

1. Select and open the tool . Then construct a rectangle, a square, a 

parallelogram, a trapezium and a rhombus.  

(You can construct the square using the Regular Polygons tool ). 

 

2. Write below each shape, its name by using the Text tool which is on the left side of 

the screen.  

 

Complete the table below, using the Measurement tools.  

 

 Opposite sides 

are equal  

Opposite angles 

are equal 

All sides 

are equal 

All angles 

are equal  

Rectangle     

Square     

Parallelogram     

Trapezium     

Rhombus      

 

3. Write your observations below.  

 

 

4. Check your observations by enlarging and reducing your shapes with the use of 

your mouse. Are the observations that you wrote above still valid for all cases? 

 

 

Section Β  

 

1. Construct the quadrilateral which has all the properties listed below: 

 All sides have equal length.  

 Its angles are not right angles.  

 Its diagonals are perpendicular. 

 Opposite sides are parallel.  

 

2. Construct an isosceles trapezium and investigate its properties.                                                       

 

Write the properties of an isosceles trapezium.   
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Box 7: Illustrative Task Sequence for Example D1 

 

Creating a concept of quadrilateral function 

 

What mutual characteristics do line 

segments ZP, X P´,  and YP´´ have ? (See 

Figure 1) 

 

Look at the picture on the computer. 

What is the curve on which point V 

moves if we move point Z along a line 

parallel to line XY? What is point V? Try 

to estimate what the shape of the curve is. 

 

 

 

1. Using any DGS, draw a horizontal line 

p and mark a line segment AB on the line 

(See Figure 2). Draw a line q parallel to 

the line p. Choose a point C on the line q. 

Construct a triangle ABC and draw 

intersection V of its heights. Move a 

point C along the line q and observe the 

curve formed by a point V. Use tool Trail 

yes/no.  

Using the button Set in the program 

Cabri, draw a curve indicating the 

movement of a point V when the position 

of a point C is changed. Display axis and 

grid points in the monitor pad. […]  

 

2. What do parameters a, b, c influence? 

How is the curve shape changing when 

the parameters are changing?  

How would you name the given function 

when you can see the equation describing 

it? Do you know what the curve formed 

by the point V is called? 

 

3. Use computer and draw the graphs of 

some quadratics functions. Parameter 

changes!  
 

 
Figure 1 

 
 

 
Figure 2 
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Box 8: Illustrative Task Sequence for Example D2 

 

Creating a concept of quadrilateral function 

 

The challenge: 

Show that the statement  “Three heights 

of a triangle are concurrent” is true. 

 

Task 1 

Demonstrate the situation of the 

statement in a geometry system, or 

equivalently, draw the situation using 

paper and pencil, Figure 1. 

 

 

 

Task 2 

Demonstrate the statement in a dynamic 

geometry system, Figure 2. 

 

 

 

 

 

 

 

Task 3 

Verify the statement in DGS. We could 

act as follows, Figure 3: 

 

- denote the intersection of the heights by 

P.  (Does the point P always exist? 

Why?). 

- verify whether P also lies on the 

remaining height. 
 

  

 

 
Figure 1 
 

 
Figure 2 

 
Figure 3 

 

 

 

 

 


