International Electronic Journal of Mathematics Education

Gender Differences in Achievement in an Inquiry-Based Learning Precalculus Course
  • Article Type: Research Article
  • International Electronic Journal of Mathematics Education, 2015 - Volume 10 Issue 2, pp. 97-110
  • Published Online: 02 Aug 2015
  • Article Views: 745 | Article Download: 1051
  • Open Access Full Text (PDF)
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Cooper TE, Bailey B, Briggs KS. Gender Differences in Achievement in an Inquiry-Based Learning Precalculus Course. Int Elect J Math Ed. 2015;10(2), 97-110.
APA 6th edition
In-text citation: (Cooper et al., 2015)
Reference: Cooper, T. E., Bailey, B., & Briggs, K. S. (2015). Gender Differences in Achievement in an Inquiry-Based Learning Precalculus Course. International Electronic Journal of Mathematics Education, 10(2), 97-110.
Chicago
In-text citation: (Cooper et al., 2015)
Reference: Cooper, Thomas E., Brad Bailey, and Karen S. Briggs. "Gender Differences in Achievement in an Inquiry-Based Learning Precalculus Course". International Electronic Journal of Mathematics Education 2015 10 no. 2 (2015): 97-110.
Harvard
In-text citation: (Cooper et al., 2015)
Reference: Cooper, T. E., Bailey, B., and Briggs, K. S. (2015). Gender Differences in Achievement in an Inquiry-Based Learning Precalculus Course. International Electronic Journal of Mathematics Education, 10(2), pp. 97-110.
MLA
In-text citation: (Cooper et al., 2015)
Reference: Cooper, Thomas E. et al. "Gender Differences in Achievement in an Inquiry-Based Learning Precalculus Course". International Electronic Journal of Mathematics Education, vol. 10, no. 2, 2015, pp. 97-110.
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Cooper TE, Bailey B, Briggs KS. Gender Differences in Achievement in an Inquiry-Based Learning Precalculus Course. Int Elect J Math Ed. 2015;10(2):97-110.

Abstract

The authors conducted a two-semester quasi-experimental study in which each author taught a traditional lecture-based section of precalculus and a section using an inquiry-based approach called a Modified Moore Method in which the students worked through and presented the course material. A common final exam was used to compare student achievement. The results were compared for the overall population and by each instructor. Gender proved to be an important variable with the females performing significantly better in the Modified Moore Method sections than their counterparts in the traditional sections while there were no significant differences for the males.

References

  • Benbow, C. P. (1988). Sex differences in mathematical reasoning ability in intellectually talented preadolescents: Their nature, effects, and possible causes. Behavioral and Brain Sciences, 11(2), 169–232. doi: 10.1017/S0140525X00049244
  • Ben-Zeev, T., Fein, S., & Inzlicht, M. (2005). Arousal and stereotype threat. Journal of Experimental Social Psychology, 41(2), 174–181. doi: 10.1016/j.jesp.2003.11.007
  • Betz, N. E., & Hackett, G. (1983). The relationship of mathematics self-efficacy expectations to the selection of science-based college majors. Journal of Vocational Behavior, 23(3), 329. doi: 10.1016/0001-8791(83)90046-5
  • Bouchey, H. A., & Harter, S. (2005). Reflected appraisals, academic self-perceptions, and math/science performance during early adolescence. Journal of Educational Psychology, 97(4), 673–687. doi: 10.1037/0022-0663.97.4.673
  • Briggs, K. S., Bailey, B., & Cooper, T. E. (2001). Is Moore better (in precalculus)? American Mathematical Society’s Notices, 58(7), 963–965.
  • Byrnes, J. P. (2005). Gender differences in math: Cognitive processes in an expanded framework. In A. Gallagher & J. Kaufman (Eds.), Gender differences in mathematics: An integrative psychological approach (pp. 73–98). New York, NY: Cambridge University Press. doi: 10.1017/CBO9780511614446.005
  • Byrnes, J. P., & Takahira, S. (1993). Explaining gender differences on SAT math items. Developmental Psychology, 29(5), 805–810. doi: 10.1037/0012-1649.29.5.805 
  • Cadinu, M., Maass, A., Rosabianca, A., & Kiesner, J. (2005). Why do women underperform under stereotype threat? Evidence for the role of negative thinking. Psychological Science, 16(7), 572– 578. doi: 10.1111/j.0956-7976.2005.01577.x
  • Chalice, D. R. (1995). How to teach a class by the modified Moore method. American Mathematical Monthly, 102(4), 317–321. doi: 10.2307/2974951
  • Cobb, P. (1994). Where is the mind? Constructivist and sociocultural perspectives on mathematical development.Educational Researcher, 23(7), 13–19. doi: 10.3102/0013189X023007013
  • Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, NJ: Erlbaum.
  • Cohen, D. W. (1982). A modified Moore method for teaching undergraduate mathematics. American Mathematical Monthly, 89(7),  473–474, 487–490.
  • Confrey, J. (1990). What constructivism implies for teaching. In R. B. Davis, C. A. Maher & N. Noddings (eds.), Constructivist views on the teaching and learning of mathematics (JRME monograph 4) (pp. 107–122). Reston, VA : NCTM.
  • Dochy, F., Segers, M., Van den Bossche, P., & Gijbels, D. (2003). Effects of problem-based learning: A meta-analysis.Learning and Instruction, 13, 533–568. doi:10.1016/S0959-4752(02)00025-7
  • Fennema, E., & Sherman, J. (1977). Sex-related differences in mathematics achievement, spatial visualization, and affective factors. American Educational Research Journal, 14, 51–71.  doi: 10.3102/00028312014001051
  • Frome, P. M., & Eccles, J. S. (1998). Parents’ influence on children’s achievement-related perceptions. Journal of Personality and Social Psychology, 74(2), 435–452. doi: 10.1037/0022-3514.74.2.435
  • Hmelo-Silver, C., Duncan, R., & Chinn, C. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42(2), 99–107. doi: 10.1080/00461520701263368
  • Jones, F. B. 1977. The Moore method. American Mathematical Monthly, 84(4), 273–278.
  • Keller, C. (2001). Effects of teachers’ stereotyping on students’ stereotyping of mathematics as a male domain. Journal of Social Psychology, 141(2), 165–173. doi: 10.1080/00224540109600544
  • Kiefer A. K., & Sekaquaptewa D. (2007). Implicit stereotypes, gender identification, and math-related outcomes: A prospective study of female college students. Psychological Science, 18(1), 13–18. doi: 10.1111/j.1467-9280.2007.01841.x
  • Kirschner, P. A., J. Sweller, & R. E. Clark. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist,41(2), 75–86. doi: 10.1207/s15326985ep4102_1
  • Kuhn, D. (2007). Is direct instruction the answer to the right question? Educational Psychologist, 42, 109–113. doi: 10.1080/00461520701263376
  • Laursen, S., Hassi, M., Kogan, M., Hunter, A., & Weston, T. (2011). Evaluation of the IBL mathematics project: Student and instructor outcomes of inquiry-based learning in college mathematics. Boulder, CO: University of Colorado Boulder, Assessment & Evaluation Center for Inquiry-Based Learning in Mathematics. Retrieved from http://colorado.edu/eer/research/documents/IBLmathReportALL_050211.pdf
  • Li, Q. (1999). Teachers’ beliefs and gender differences in mathematics: A review. Educational Research, 41(1), 63–76. doi: 10.1080/0013188990410106
  • Lindberg, S. M., Hyde, J. S., & Peterson, J. L. (2010). New trends in gender and mathematics performance: A meta-analysis. Psychological Bulletin136(6), 1123–1135. doi: 10.1037/a0021276
  • Mahavier, W. T. (1997). A gentle discovery method. College Teaching, 45, 132–135. doi: 10.1080/87567559709596214
  • Mahavier, W. T. (2007). Trigonometry. Journal of Inquiry-Based Learning in Mathematics, 1, n/a. Retrieved  from http://www.jiblm.org/downloads/jiblmjournal/V070101/V070101.pdf
  • Nosek,  B. A., Banaji M. R., & Greenwald A. G. (2002). Math = male, me = female, therefore math   me. Journal of Personality and Social Psychology, 83(1), 44–59. doi: 10.1037/0022-3514.83.1.44
  • Pallas, A. M., & Alexander, K. L. (1983). Sex differences in quantitative SAT performance: new evidence on the differential coursework hypothesis. American Educational Research Journal, 20(2), 165–182. doi: 10.3102/00028312020002165
  • Quinn, D. M., & Spencer, S. J. (2001). The interference of stereotype threat with women’s generation of mathematical problem-solving strategies. Journal of Social Issues, 57(1), 55–71. doi: 10.1111/0022-4537.00201
  • Reichardt, C. S. (2009). Quasi-experimental design. In R. E. Millsap & A. Maydeu-Olivares (eds.), The SAGE Handbook of Quantitative Methods in Psychology (pp. 46–71). Thousand Oaks, CA: Sage. doi: 10.4135/978085702094
  • Schmidt, H. G., Loyens, S. M. M., van Gog, T., & Paas, F. (2007). Problem-based learning is compatible with human cognitive architecture: Commentary on Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42, 91–97. doi: 10.1080/00461520701263350
  • Steele, C. M. (1997). A threat in the air: How stereotypes shape intellectual identity and performance. American Psychologist, 52(6), 613–629.
  • Stewart, J., Redlin, L., & Watson, S. (2007). Precalculus: Mathematics for Calculus (5th ed.). Pacific Grove, CA: Brooks/Cole.
  • Traylor, D. R. (1972). Creative Teaching: The Heritage of R. L. Moore. Houston, TX: University of Houston.
  • von Glasersfeld, E. (2003). An Exposition of Constructivism: Why Some Like It Radical. Retrieved from http://www.oikos.org/constructivism.htm
  • Whyburn, L. S. (1970). Student oriented teaching – the Moore method. American Mathematical Monthly, 77(4), 351–359.
  • Zitarelli, D. E. (2004). The origins and early impact of the Moore method. American Mathematical Monthly. 111(6), 465–486.

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.