International Electronic Journal of Mathematics Education

Euclidean Geometry's Problem Solving Based on Metacognitive in Aspect of Awareness
  • Article Type: Research Article
  • International Electronic Journal of Mathematics Education, 2016 - Volume 11 Issue 4, pp. 961-974
  • Published Online: 20 Jul 2016
  • Article Views: 754 | Article Download: 1123
  • Open Access Full Text (PDF)
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: In’am A. Euclidean Geometry's Problem Solving Based on Metacognitive in Aspect of Awareness. Int Elect J Math Ed. 2016;11(4), 961-974.
APA 6th edition
In-text citation: (In’am, 2016)
Reference: In’am, A. (2016). Euclidean Geometry's Problem Solving Based on Metacognitive in Aspect of Awareness. International Electronic Journal of Mathematics Education, 11(4), 961-974.
Chicago
In-text citation: (In’am, 2016)
Reference: In’am, Akhsanul. "Euclidean Geometry's Problem Solving Based on Metacognitive in Aspect of Awareness". International Electronic Journal of Mathematics Education 2016 11 no. 4 (2016): 961-974.
Harvard
In-text citation: (In’am, 2016)
Reference: In’am, A. (2016). Euclidean Geometry's Problem Solving Based on Metacognitive in Aspect of Awareness. International Electronic Journal of Mathematics Education, 11(4), pp. 961-974.
MLA
In-text citation: (In’am, 2016)
Reference: In’am, Akhsanul "Euclidean Geometry's Problem Solving Based on Metacognitive in Aspect of Awareness". International Electronic Journal of Mathematics Education, vol. 11, no. 4, 2016, pp. 961-974.
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: In’am A. Euclidean Geometry's Problem Solving Based on Metacognitive in Aspect of Awareness. Int Elect J Math Ed. 2016;11(4):961-74.

Abstract

Solving mathematical problems, as the main subject, is intended to improve one’s ability in mathematics. The approach adopted in this present research was a qualitative one with the subject of the second semester students of mathematics in mathematics department. Six students consisting of two students under high, two middle, and two low ability categories were involved in this research. The data were obtained through four problems in the geometry subject test. The validity test employed was the item validity and the four exersices showed the coefficients of 0.79; 0.75; 0.70, and 0.82, respectively, meaning that the four exersices fulfilled the problem validity, meanwhile the test of reliability showed the coefficient of 0.78, namely the problems also met the reliability requirement. The results of the research showed that students were aware of what to plan and to do in the problem solving. The respondents realized them by writing the aspects they knew and the problems they intended to solve. In terms of the learning results, the two groups, high and middle, possessed some awareness in problem solving, but the students under the low category may be said to have less awareness of what to do in problem solving.

References

  • Arikunto, S. (2009). Dasar-dasar evaluasi Pendidikan. Jakarta: Bumi Aksara.
  • Blanco, L. J., Barona, E. G. & Carrasco, A. C. (2013). Cognition and affect in mathematics problem solving with prospective teachers. The Mathematics Enthusiast, 10 (1 & 2), 335-364.
  • Dochy, F. (2001). A New assessment era: different needs, new challenges. Learning and Instruction. 10 (1), 11-20.
  • Ennys, R.H. (2005). A Taxonomy of critical thinking dispositions and abilities in J.B. Baronand R.J. Sternberg Eds., Teaching thinking skills: Theory and practice, new york, freeman, in evaluating critical thinking skills: Two conceptualizations, Journal of distance education, 20(2),1-20.
  • Hannula, M.S., Maijala, H. & Pehkonen, E. (2004). development of understanding and self-confidence in mathematics; grades 5–8. Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education.
  • Haryani, D. (2012). Profil proses berpikir kritis siswa SMA dengan gaya kognitif field independen dan berjenis kelamin laki-laki dalam memecahkan masalah matematika, Prosiding SNPM Universitas Sebelas Maret.
  • Heidari, F. & Bahrami, Z. (2012). The Relationship between thinking styles and metacognitive awareness among Iranian EFL learners. International Journal of Linguistic, 4 (3).
  • In’am, A. (2003). Geometry euclid, Malang: Bayu Media.
  • In’am, A. (2012). A Metacognitive approach to solving algebra problem. International Journal of Independent Research and Studies–IJIRS 1(4).
  • In’am, A. (2015). Menguak penyelesaian masalah matematika: analisis pendekatan metakognitif dan model Polya. Yogyakarta: Aditya Media.
  • Keichi, S. (2000). Metacognition in mathematics education in Japan. Japan: JSME.
  • Khoiriyah, (2013). Analisis tingkat berpikir siswa berdasarkan teori van hiele pada materi dimensi tiga ditinjau dari gaya kognitif field dependent dan field independent. Jurnal Pendidikan Matematika Solusi, 1(1).
  • Komariah, K. (2011). Penerapan metode pembelajaran problem solving model polya untuk meningkatkan kemampuan memecahkan masalah bagi siswa kelas IX J di SMPN 3 Cimahi. Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 14 Mei 2011.
  • Kosiak, J.J. (2004). Using a synchronous discussion to facilitate collaborative problem solving in college algebra. Montana State University. Doctoral Dissertation
  • Larmar, S. & Lodge, J. (2014). Making sense of how I learn; metacognitive capital and the first year university student. The International Journal of the First Year in Higher Education, 5(1), 93-105.
  • Lerch, C. (2004). Control Decisions and Personal Beliefs: Their Effect on Solving Mathematical Problems. Journal of Mathematical Behavior, 23, 21-36.
  • Mardzellah, M. (2007). Sains pemikiran dan etika. Kualalumpur: PTS Profesional.
  • McMillan, J.H. & Schumacher, S. (2001). Research in Education, New York: Longman.
  • Memnun, D. S., Hart, L. C. & Akkaya, R. (2012). A Research on the mathematics problem solving belief of mathematics, science and elementary pre service training in Turkey in term of Different Variables. International Journal of Humanities and Social Sciences, 2(24).
  • Merriam (1988). Case study research in education: A Qualitative approach. Michigan: Jossey-Bass
  • Murdanu (2004). Analisis kesulitan siswa SLTP dalam menyelesaikan persoalan geometri, Tesis PPS Universitas Negeri Surabaya.
  • Novotna, J. (2014). Problem solving in school mathematics based on heuristic strategies, Journal on Efficiency and Responsibility in Education and Science, 7(1), 1-6.
  • Nurdin (2007). Model pembelajaran matematika untuk mengembangkan kemampuan metakognitif (Model PMKM). Disertasi S-3 Pendidikan Matematika, Universitas Negeri Surabaya.
  • O’Neil, H. F. & Abedi, J. (1996). Reliability & validity of state metacognitive inventory: potential for alternative assessment. Journal of Educational Research, 89, 234-245
  • Perkins, C. & Murphy, E. (2006). Identifying and measuring individual engagement in critical thinking in online discussions: an exploratory study. Educational Technology & Society, 9(1), 298-307.
  • Polya, G. (1971). How to solve it: a new aspect of mathematics method. New Jersey: Princeton University Press
  • Ruseffendi E.T. (2006). Pengantar kepada membantu guru mengembangkan kompetensinya dalam pengajaran matematika untuk meningkatkan CBSA, Bandung: Tarsito.
  • Saad, N. (2004). Perlakuan metakognitif siswa tingkatan empat aliran sains dalam penyelesaian masalah matematik tambahan. Kajian Jabatan Matematik, Fakulti Sains dan Teknologi Universiti Pendidikan Sultan Idris.
  • Subanji (2007). Proses berpikir penalaran kovariasional pseudo dalam meng-konstruksi grafik fungsi kejadian dinamik berkebalikan. Disertasi S-3 Pendidikan Matematika, Universitas Negeri Surabaya.
  • Wahyudin (2010). Peranan problem solving dalam matematika, Bandung: FPMIPA UPI
  • Yang, Y-T.C., Newby, T.J. & Bill, R.L. (2005). Using socratic questioning to promote critical thinking skills in a synchronous discussion forum in distance learning environments. American Journal of Distance Education, 19(3), 163-181.
  • Yin, R.K. (1989). Case study research design and methods. Washington: Cosmos Corporation.

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.