International Electronic Journal of Mathematics Education

Analysis of Didactical Trajectories in Teaching and Learning Mathematics: Overcoming Extreme Objectivist and Constructivist Positions
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Godino JD, Rivas H, Burgos M, Wilhelmi MR. Analysis of Didactical Trajectories in Teaching and Learning Mathematics: Overcoming Extreme Objectivist and Constructivist Positions. Int Elect J Math Ed. 2019;14(1), 147-161. https://doi.org/10.12973/iejme/3983
APA 6th edition
In-text citation: (Godino et al., 2019)
Reference: Godino, J. D., Rivas, H., Burgos, M., & Wilhelmi, M. R. (2019). Analysis of Didactical Trajectories in Teaching and Learning Mathematics: Overcoming Extreme Objectivist and Constructivist Positions. International Electronic Journal of Mathematics Education, 14(1), 147-161. https://doi.org/10.12973/iejme/3983
Chicago
In-text citation: (Godino et al., 2019)
Reference: Godino, Juan D., Hernán Rivas, María Burgos, and Miguel R. Wilhelmi. "Analysis of Didactical Trajectories in Teaching and Learning Mathematics: Overcoming Extreme Objectivist and Constructivist Positions". International Electronic Journal of Mathematics Education 2019 14 no. 1 (2019): 147-161. https://doi.org/10.12973/iejme/3983
Harvard
In-text citation: (Godino et al., 2019)
Reference: Godino, J. D., Rivas, H., Burgos, M., and Wilhelmi, M. R. (2019). Analysis of Didactical Trajectories in Teaching and Learning Mathematics: Overcoming Extreme Objectivist and Constructivist Positions. International Electronic Journal of Mathematics Education, 14(1), pp. 147-161. https://doi.org/10.12973/iejme/3983
MLA
In-text citation: (Godino et al., 2019)
Reference: Godino, Juan D. et al. "Analysis of Didactical Trajectories in Teaching and Learning Mathematics: Overcoming Extreme Objectivist and Constructivist Positions". International Electronic Journal of Mathematics Education, vol. 14, no. 1, 2019, pp. 147-161. https://doi.org/10.12973/iejme/3983
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Godino JD, Rivas H, Burgos M, Wilhelmi MR. Analysis of Didactical Trajectories in Teaching and Learning Mathematics: Overcoming Extreme Objectivist and Constructivist Positions. Int Elect J Math Ed. 2019;14(1):147-61. https://doi.org/10.12973/iejme/3983

Abstract

There is currently a consensus in mathematics education that favors constructivist instructional models, which are based on the inquiry of knowledge by students. There are, however, different views that consider objectivist models, based on knowledge transmission (direct or explicit teaching) more effective in the teaching of scientific disciplines. In this article we analyze an instructional process on elementary probability directed to prospective primary education teachers, which was designed under constructivist principles and is based on data analysis projects. A systematic analysis of the study process reveals that the optimization of the learning process involves implementing frequent moments that require explicit transmission of knowledge by the teacher. This analysis is based on some theoretical tools from the onto-semiotic approach to mathematical knowledge and instruction, which allow identifying significant didactical facts that support a mixed instructional model. The relevance for mathematics education to contemplate the use of mixed instructional models that articulate constructivists and objectivist approaches to promote mathematical learning is concluded.

References

  • Alfieri L., Brooks P. J., Aldrich N. J., & Tenenbaum H. R. (2011). Does discovery-based instruction enhance learning? Journal of Educational Psychology, 103(1), 1-18. https://doi.org/10.1037/a0021017
  • Andrew L. (2007). Comparison of teacher educators’ instructional methods with the constructivist ideal. The Teacher Educator, 42(3), 157-184. https://doi.org/10.1080/08878730709555401
  • Artigue M., & Blomhøj M. (2013). Conceptualizing inquiry-based education in mathematics. ZDM Mathematics Education, 45, 797–810. https://doi.org/10.1007/s11858-013-0506-6
  • Batanero C., & Godino J. D. (2003). Estocástica y su didáctica para maestros [Stochastics and its didactics for teachers]. Departament of Mathematics Education, University of Granada: Granada. Retrieved from http://www.ugr.es/local/jgodino
  • Bauersfeld H. (1988). Interaction, construction, and knowledge: Alternative perspectives for mathematics education. En T. Coony & D. Grows (Eds.), Effective Mathematics Teaching (p. 27-46). Reston, VA: NCTM/Erlbaum.
  • Boghossian P. (2006). Behaviorism, constructivism, and Socratic pedagogy. Educational Philosophy and Theory, 38(6), 713-722. https://doi.org/10.1111/j.1469-5812.2006.00226.x
  • Breda A., Font V., & Pino-Fan L. (2018) Criterios Valorativos y Normativos en Didáctica de las Matemáticas: el Caso del Constructo Idoneidad Didáctica. Bolema, 32(60), 255-278. https://doi.org/10.1590/1980-4415v32n60a13
  • Ertmer P. A., & Newby T. J. (1993). Behaviorism, cognitivism, constructivism: comparing critical features from an instructional design perspective. Performance Improvement Quarterly, 6(4), 50–72. https://doi.org/10.1111/j.1937-8327.1993.tb00605.x
  • Font V., Godino J. D., & Gallardo J. (2013). The emergence of objects from mathematical practices. Educational Studies in Mathematics, 82, 97–124. https://doi.org/10.1007/s10649-012-9411-0
  • Fox R. (2001). Constructivism examined. Oxford Review of Education, 27(1), 23-35. https://doi.org/10.1080/03054980125310
  • Godino J. D. (2013). Indicadores de la idoneidad didáctica de procesos de enseñanza y aprendizaje de las matemáticas [Didactic suitability indicators of mathematics teaching and learning processes]. Cuadernos de Investigación y Formación en Educación Matemática, 11, 111-132.
  • Godino J. D., Batanero C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM. The International Journal on Mathematics Education, 39(1-2), 127-135. https://doi.org/10.1007/s11858-006-0004-1
  • Godino J. D., Batanero C., Cañadas G. R., & Contreras, J. M. (2015). Linking inquiry and transmission in teaching and learning mathematics. In K. Krainer & N. Vondrobá (Eds.), Proceedings of the Ninth Conference of the European Society for Research in Mathematics Education (CEME9, 4-8 February 2015) (pp. 2642-2648). Prague, Czech Republic: Charles University in Prague, Faculty of Education and ERME.
  • Godino J. D., Contreras A., & Font, V. (2006). Análisis de procesos de instrucción basado en el enfoque ontológico-semiótico de la cognición matemática [Analysis of instructional processes base on the onto-semiotic approach of mathematics cognition]. Recherches en Didactiques des Mathematiques, 26(1), 39-88.
  • Godino J. D., Font V., Wilhelmi M. R., & Lurduy O. (2011). Why is the learning of elementary arithmetic concepts difficult? Semiotic tools for understanding the nature of mathematical objects. Educational Studies in Mathematics, 77(2-3), 247-265. https://doi.org/10.1007/s10649-010-9278-x
  • Godino J. D., Rivas H., Arteaga P., Lasa A., & Wilhelmi M. R. (2014). Ingeniería didáctica basada en el enfoque ontológico - semiótico del conocimiento y la instrucción matemáticos [Didactic engineering based on the onto-semiotic approach to mathematical knowledge and instruction]. Recherches en Didactique des Mathématiques, 34(2/3), 167-200.
  • Hudson P., Miller S. P., & Butler F. (2006). Adapting and merging explicit instruction within reform based mathematics classrooms. American Secondary Education, 35(1), 19-32.
  • Jonassen D. H. (1991). Objectivism vs. constructivism: do we need a new philosophical paradigm? Educacional Technology Research & Development, 39(3), 5-14. https://doi.org/10.1007/BF02296434
  • Kirschner P. A., Sweller J., & Clark R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75-86. https://doi.org/10.1207/s15326985ep4102_1
  • Ku K.Y. I., Ho I. T., Hau K. T., & Lai, E. C. M. (2014). Integrating direct and inquiry-based instruction in the teaching of critical thinking: an intervention study. Instructional Science, 42, 251-269. https://doi.org/10.1007/s11251-013-9279-0
  • Lobato J., Clarke D., & Ellis A. B. (2005). Initiating and eliciting in the aching: a reformulation of telling. Journal for Research in Mathematics Education, 36(2), 101-136.
  • Mayer R. E. (2004). Should there be a three-strikes rule against pure discovery learning? American Psychologist, 59(1), 14-19. https://doi.org/10.1037/0003-066X.59.1.14
  • National Council of Teachers of Mathematics (NCTM) (2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.
  • Pino-Fan L., Assis A., & Castro W. F. (2015). Towards a methodology for the characterization of teachers’ didactic-mathematical knowledge. Eurasia Journal of Mathematics, Science & Technology Education, 11(6), 1429-1456.
  • Radford L. (2012). Education and the illusions of emancipation. Educational Studies in Mathematics, 80, 101-118. https://doi.org/10.1007/s10649-011-9380-8
  • Reigeluth C. M. (2000). ¿En qué consiste una teoría de diseño educativo y cómo se está transformando? En C. M. Reigeluth (Ed.), Diseño de la instrucción. Teorías y modelos. Un nuevo paradigma de la teoría de la instrucción (pp. 15-40). Madrid: Santillana.
  • Simon M. A. (1995). Reconstructing mathematics pedagogy form a constructivist perspective. Journal for Research in Mathematics Education, 26, 114-145. https://doi.org/10.2307/749205
  • Simon M. A., & Tzur R. (2004). Explicating the role of mathematical tasks in conceptual learning: An elaboration of the Hypothetical Learning Trajectory. Mathematical Thinking and Learning, 6(2), 91-104. https://doi.org/10.1207/s15327833mtl0602_2
  • Steele M. M. (2005). Teaching students with learning disabilities: Constructivism of behaviorism? Current Issues in Education, 8(10). Retrieved from http://cie.ed.asu.edu/coume8/number10
  • Stephan M. (2014). Learner-Centered teaching in mathematics education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education. Berlin: Springer. https://doi.org/10.1007/978-94-007-4978-8_87
  • Sweller J., Kirschner P. A., & Clark R. E. (2007). Why minimally guided teaching techniques do not work: A reply to commentaries. Educational Psychologist, 42(2), 115-121. https://doi.org/10.1080/00461520701263426
  • Voigt J. (1985). Patterns and routines in classroom interaction. Recherches en Didactique des Mathématiques, 6(1), 69-118.
  • Vrasidas, C. (2000). Constructivism versus objectivism: Implications for interaction, course design, and evaluation in distance education. International Journal of Educational Telecommunications, 6(4), 339-362.
  • Yackel E., & Cobb P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 27(4), 458-477. https://doi.org/10.2307/749877

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.