International Electronic Journal of Mathematics Education

A Written Instrument for Assessing Students’ Units Coordination Structures
  • Article Type: Research Article
  • International Electronic Journal of Mathematics Education, 2015 - Volume 10 Issue 2, pp. 111-136
  • Published Online: 02 Aug 2015
  • Article Views: 817 | Article Download: 762
  • Open Access Full Text (PDF)
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Norton A, Boyce S, Phillips N, Anwyll T, Ulrich C, Wilkins JLM. A Written Instrument for Assessing Students’ Units Coordination Structures. Int Elect J Math Ed. 2015;10(2), 111-136.
APA 6th edition
In-text citation: (Norton et al., 2015)
Reference: Norton, A., Boyce, S., Phillips, N., Anwyll, T., Ulrich, C., & Wilkins, J. L. M. (2015). A Written Instrument for Assessing Students’ Units Coordination Structures. International Electronic Journal of Mathematics Education, 10(2), 111-136.
Chicago
In-text citation: (Norton et al., 2015)
Reference: Norton, Anderson, Steven Boyce, Nathan Phillips, Tessa Anwyll, Catherine Ulrich, and Jesse L. M. Wilkins. "A Written Instrument for Assessing Students’ Units Coordination Structures". International Electronic Journal of Mathematics Education 2015 10 no. 2 (2015): 111-136.
Harvard
In-text citation: (Norton et al., 2015)
Reference: Norton, A., Boyce, S., Phillips, N., Anwyll, T., Ulrich, C., and Wilkins, J. L. M. (2015). A Written Instrument for Assessing Students’ Units Coordination Structures. International Electronic Journal of Mathematics Education, 10(2), pp. 111-136.
MLA
In-text citation: (Norton et al., 2015)
Reference: Norton, Anderson et al. "A Written Instrument for Assessing Students’ Units Coordination Structures". International Electronic Journal of Mathematics Education, vol. 10, no. 2, 2015, pp. 111-136.
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Norton A, Boyce S, Phillips N, Anwyll T, Ulrich C, Wilkins JLM. A Written Instrument for Assessing Students’ Units Coordination Structures. Int Elect J Math Ed. 2015;10(2):111-36.

Abstract

Units coordination refers to students’ abilities to create units and maintain their relationships with other units that they contain or constitute. In recent research, units coordination has arisen as a key construct that mediates opportunities for student learning across several domains of mathematics, including fractions knowledge and algebraic reasoning. To date, assessments of students’ stages of units coordinating ability have relied upon clinical interviews or teaching experiments whose time-intensive nature precludes opportunities for conducting large-scale studies. We introduce a written instrument that teachers and researchers can use with large populations of students. We report on the reliability and validity of assessments based on the instrument.
 

References

  • Boyce, S., & Norton, A. (in review). Co-construction of fractions schemes and units coordinating structures. Journal of Mathematical Behavior.
  • Clements, D. H., Battista, M. T., Sarama, J., & Swaminathan, S. (1997). Development of students' spatial thinking in a unit on geometric motions and area. The Elementary School Journal, 171-186.
  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37-46.
  • Cohen, J. (1992). A power primer. Psychological Bulletin112(1), 155-159.
  • Ellis, A. B. (2007). The influence of reasoning with emergent quantities on students’ generalizations. Cognition & Instruction25, 439 – 478. doi:10.1080/07370000701632397
  • Hackenberg, A. J. (2007). Units coordination and the construction of improper fractions: A revision of the splitting hypothesis. Journal of Mathematical Behavior, 26, 27-47. doi:10.1016/j.jmathb.2007.03.002
  • Hackenberg, A. J. (2010). Students’ reasoning with reversible multiplicative relationships. Cognition and Instruction, 28(4), 1-50. doi:10.1080/07370008.2010.511565
  • Hackenberg, A. J. (2013a) Musings on three epistemic algebraic students. In: Moore K. C., Steffe L. P. & Hatfield L. L. (eds.) Epistemic algebraic students: Emerging models of students’ algebraic knowing. University of Wyoming: Laramie WY: 81–124.
  • Hackenberg, A. J. (2013b). The fractional knowledge and algebraic reasoning of students with the first multiplicative concept. The Journal of Mathematical Behavior32(3), 538-563. doi:10.1016/j.jmathb.2013.06.007
  • Hackenberg, A. J., & Lee, M. Y. (2015). Relationships between students’ fractional knowledge and equation writing. Journal for Research in Mathematics Education, 46(2), 196-243.
  • Hackenberg, A. J., & Tillema, E. S. (2009). Students’ whole number multiplicative concepts: A critical constructive resource for fraction composition schemes. Journal of Mathematical Behavior, 28, 1-18. doi:10.1016/j.jmathb.2009.04.004
  • Hunting, R. P. (1983). Alan: A case study of knowledge of units and performance with fractions. Journal for Research in Mathematics Education, 14(3), 182-197. doi:10.2307/748381
  • Inhelder, B., & Piaget, J. (1958). The growth of logical thinking from childhood to adolescence.  New York: Basic Books.
  • Izsák, A., Jacobsen, E., de Araujo, Z., & Orrill, C. H. (2012) Measuring mathematical knowledge for teaching fractions with drawn quantities. Journal for Research in Mathematics Education, 43(4). doi:10.5951/jresematheduc.43.4.0391
  • Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159-174. doi:10.2307/2529310
  • Norton, A., & Boyce, S. (in review). Provoking the Construction of a Structure for Coordinating n+1 Levels of Units. Journal of Mathematical Behavior.
  • Norton, A., & Boyce, S. (2013). A cognitive core for common state standards. Journal of Mathematical Behavior, 32, 266-279. doi:10.1016/j.jmathb.2013.01.001
  • Norton, A., Boyce, S., Hatch, J. (in press). Coordinating units and constructing fractions at the Candy Depot. Teaching Mathematics in the Middle School.
  • Norton, A., Boyce, S., Ulrich, C., & Phillips. N. (2015). Students’ units coordination activity: A cross-sectional analysis.Journal of Mathematical Behavior, 39, 51-66. doi:10.1016/j.jmathb.2015.05.001
  • Olive, J. & Çağlayan, G. (2008). Learner’s difficulties with quantitative units in algebraic word problems and the teacher’s interpretations of those difficulties. International Journal of Science and Mathematics Education, 6, 269–292. doi:10.1007/s10763-007-9107-6
  • Olive, J., & Steffe, L. P. (2002). The construction of an iterative fractional scheme: the case of Joe. Journal of Mathematical Behavior, 20(4), 413-437. doi:10.1016/S0732-3123(02)00086-X
  • Piaget, J. (1970a). Genetic epistemology (E. Duckworth, Trans.). New York: Norton.
  • Piaget, J. (1970b). Structuralism. New York: Basic Books.
  • Piaget, J. (1972). The principles of genetic epistemology. London: Routledge & Kegan Paul.
  • Piaget, J., & Inhelder, B. (1967). The child’s conception of space (Trans. F. J. Langdon & J. L. Lunzer). New York: Norton (Original work published in 1948).
  • Reynolds, A., & Wheatley, G. H. (1996). Elementary students' construction and coordination of units in an area setting. Journal for Research in Mathematics Education, 564-581. doi:10.2307/749848
  • Steffe, L. P. (1992). Schemes of action and operation involving composite units. Learning and Individual Differences, 4(3), 259-309. doi:10.1016/1041-6080(92)90005-Y
  • Steffe, L. P. (1994). Children's multiplying schemes. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 3-39). Albany, NY: State University of New York Press.
  • Steffe, L. P. (2007, April). Problems in mathematics education. Paper presented for the Senior Scholar Award of the Special Interest Group for Research in Mathematics Education (SIG-RME) at the annual conference of the American Educational Research Association in Chicago, Illinois.
  • Steffe, L. P., & Olive, J. (2010). Children's fractional knowledge. New York: Springer.
  • Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential elements. In A. E. Kelly & R. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 267-306). Mahwah, NJ: Erlbaum.
  • Steffe, L. P. & Ulrich, C. (2014). The constructivist teaching experiment. In S. Lerman (Ed.), Encyclopedia of Mathematics Education: SpringerReference. Berlin, Germany: Springer. doi:10.1007/SpringerReference_313181
  • Tillema, E. S. (2013). A power meaning of multiplication: Three eighth graders’ solutions of Cartesian product problems.The Journal of Mathematical Behavior32(3), 331-352. doi:10.1016/j.jmathb.2013.03.006
  • Ulrich, C. (2012). Additive relationships and signed quantities. (Doctoral dissertation). Retrieved from http://www.libs.uga.edu/etd

License

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.